IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v119y2020ics0378426620301710.html
   My bibliography  Save this article

Hedging crash risk in optimal portfolio selection

Author

Listed:
  • Zhu, Shushang
  • Zhu, Wei
  • Pei, Xi
  • Cui, Xueting

Abstract

When almost all underlying assets suddenly lose a certain part of their nominal value in a market crash, the diversification effect of portfolios in a normal market condition no longer works. We integrate the crash risk into portfolio management and investigate performance measures, hedging and optimization of portfolio selection involving derivatives. A suitable convex conic programming framework based on parametric approximation method is proposed to make the problem a tractable one. Simulation analysis and empirical study are performed to test the proposed approach.

Suggested Citation

  • Zhu, Shushang & Zhu, Wei & Pei, Xi & Cui, Xueting, 2020. "Hedging crash risk in optimal portfolio selection," Journal of Banking & Finance, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:jbfina:v:119:y:2020:i:c:s0378426620301710
    DOI: 10.1016/j.jbankfin.2020.105905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426620301710
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2020.105905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2007. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Management Science, INFORMS, vol. 53(1), pages 135-149, January.
    3. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    4. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2011. "Optimizing international portfolios with options and forwards," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3188-3201.
    5. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    6. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    7. Bryan Kelly & Hao Jiang, 2014. "Editor's Choice Tail Risk and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 27(10), pages 2841-2871.
    8. Bjørn Eraker, 2013. "The performance of model based option trading strategies," Review of Derivatives Research, Springer, vol. 16(1), pages 1-23, April.
    9. Dušan Isakov & Bernard Morard, 2001. "Improving Portfolio Performance with Option Strategies: Evidence from Switzerland," European Financial Management, European Financial Management Association, vol. 7(1), pages 73-91, March.
    10. Jianfeng Liang & Shuzhong Zhang & Duan Li, 2008. "Optioned Portfolio Selection: Models And Analysis," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 569-593, October.
    11. Geweke, John, 2001. "A note on some limitations of CRRA utility," Economics Letters, Elsevier, vol. 71(3), pages 341-345, June.
    12. Santa-Clara, Pedro & Saretto, Alessio, 2009. "Option strategies: Good deals and margin calls," Journal of Financial Markets, Elsevier, vol. 12(3), pages 391-417, August.
    13. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    14. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    15. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    16. Faias, José Afonso & Santa-Clara, Pedro, 2017. "Optimal Option Portfolio Strategies: Deepening the Puzzle of Index Option Mispricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(1), pages 277-303, February.
    17. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    18. Mark Britten-Jones & Stephen M. Schaefer, 1999. "Non-Linear Value-at-Risk," Review of Finance, European Finance Association, vol. 2(2), pages 161-187.
    19. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    20. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    21. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    22. Robert R. Bliss & Nikolaos Panigirtzoglou, 2004. "Option-Implied Risk Aversion Estimates," Journal of Finance, American Finance Association, vol. 59(1), pages 407-446, February.
    23. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    24. Alexander, Gordon J. & Baptista, Alexandre M., 2006. "Portfolio selection with a drawdown constraint," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3171-3189, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudio Boido & Antonio Fasano, 2023. "Mean-variance investing with factor tilting," Risk Management, Palgrave Macmillan, vol. 25(2), pages 1-24, June.
    2. Pang, Xiaochuan & Zhu, Shushang & Cui, Xueting & Ma, Jiali, 2023. "Systemic risk of optioned portfolio: Controllability and optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    3. Vera Ivanyuk, 2021. "Formulating the Concept of an Investment Strategy Adaptable to Changes in the Market Situation," Economies, MDPI, vol. 9(3), pages 1-19, June.
    4. Xiaochuan Pang & Shushang Zhu & Xueting Cui & Jiali Ma, 2022. "Systemic Risk of Optioned Portfolios: Controllability and Optimization," Papers 2209.04685, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Xiaochuan & Zhu, Shushang & Cui, Xueting & Ma, Jiali, 2023. "Systemic risk of optioned portfolio: Controllability and optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    2. Xiaochuan Pang & Shushang Zhu & Xueting Cui & Jiali Ma, 2022. "Systemic Risk of Optioned Portfolios: Controllability and Optimization," Papers 2209.04685, arXiv.org.
    3. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    4. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    5. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    6. Amita Sharma & Sebastian Utz & Aparna Mehra, 2017. "Omega-CVaR portfolio optimization and its worst case analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 505-539, March.
    7. Somayeh Moazeni & Thomas F. Coleman & Yuying Li, 2016. "Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy," Annals of Operations Research, Springer, vol. 237(1), pages 99-120, February.
    8. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    9. Tavakoli Baghdadabad, Mohammad Reza, 2014. "Average drawdown risk reduction and risk tolerances," Research in Economics, Elsevier, vol. 68(3), pages 264-276.
    10. Xiao, Helu & Zhou, Zhongbao & Ren, Teng & Liu, Wenbin, 2022. "Estimation of portfolio efficiency in nonconvex settings: A free disposal hull estimator with non-increasing returns to scale," Omega, Elsevier, vol. 111(C).
    11. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    12. Thierry Chauveau & Sylvain Friederich & Jérôme Héricourt & Emmanuel Jurczenko & Catherine Lubochinsky & Bertrand Maillet & Christophe Moussu & Bogdan Négréa & Hélène Raymond-Feingold, 2004. "La volatilité des marchés augmente-t-elle ?," Revue d'Économie Financière, Programme National Persée, vol. 74(1), pages 17-44.
    13. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    14. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    15. Fang, Yong & Chen, Lihua & Fukushima, Masao, 2008. "A mixed R&D projects and securities portfolio selection model," European Journal of Operational Research, Elsevier, vol. 185(2), pages 700-715, March.
    16. Mohd Azdi Maasar & Diana Roman & Paresh Date, 2022. "Risk minimisation using options and risky assets," Operational Research, Springer, vol. 22(1), pages 485-506, March.
    17. Marco Corazza & Giovanni Fasano & Riccardo Gusso, 2011. "Particle Swarm Optimization with non-smooth penalty reformulation for a complex portfolio selection problem," Working Papers 2011_10, Department of Economics, University of Venice "Ca' Foscari".
    18. Schuhmacher, Frank & Auer, Benjamin R., 2014. "Sufficient conditions under which SSD- and MR-efficient sets are identical," European Journal of Operational Research, Elsevier, vol. 239(3), pages 756-763.
    19. Yuanyao Ding, 2006. "Portfolio Selection under Maximum Minimum Criterion," Quality & Quantity: International Journal of Methodology, Springer, vol. 40(3), pages 457-468, June.
    20. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:119:y:2020:i:c:s0378426620301710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.