IDEAS home Printed from
   My bibliography  Save this article

A Minimax Portfolio Selection Rule with Linear Programming Solution


  • Martin R. Young

    (University of Michigan School of Business, Department of Statistics and Management Science, Ann Arbor, Michigan 48109-1234)


A new principle for choosing portfolios based on historical returns data is introduced; the optimal portfolio based on this principle is the solution to a simple linear programming problem. This principle uses minimum return rather than variance as a measure of risk. In particular, the portfolio is chosen that minimizes the maximum loss over all past observation periods, for a given level of return. This objective function avoids the logical problems of a quadratic (nonmonotone) utility function implied by mean-variance portfolio selection rules. The resulting minimax portfolios are diversified; for normal returns data, the portfolios are nearly equivalent to those chosen by a mean-variance rule. Framing the portfolio selection process as a linear optimization problem also makes it feasible to constrain certain decision variables to be integer, or 0-1, valued; this feature facilitates the use of more complex decision-making models, including models with fixed transaction charges and models with Boolean-type constraints on allocations.

Suggested Citation

  • Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
  • Handle: RePEc:inm:ormnsc:v:44:y:1998:i:5:p:673-683
    DOI: 10.1287/mnsc.44.5.673

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Elton, Edwin J & Gruber, Martin J & Padberg, Manfred W, 1976. "Simple Criteria for Optimal Portfolio Selection," Journal of Finance, American Finance Association, vol. 31(5), pages 1341-1357, December.
    3. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    4. Stone, Bernell K., 1973. "A Linear Programming Formulation of the General Portfolio Selection Problemâ€," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(4), pages 621-636, September.
    5. Sharpe, William F., 1971. "A Linear Programming Approximation for the General Portfolio Analysis Problem," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(5), pages 1263-1275, December.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:44:y:1998:i:5:p:673-683. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Walls). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.