IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v221y2019icp430-448.html
   My bibliography  Save this article

Computing the economic value of climate information for water stress management exemplified by crop production in Austria

Author

Listed:
  • Mitter, Hermine
  • Schmid, Erwin

Abstract

Climate information appears to be underutilized in water stress management in agriculture. A systematic analysis of potential impacts related to multi-seasonal dry spells, effective adaptation measures, and the economic value of climate information (VoI) may inform decision-making and facilitate the uptake and use of climate information. Hence, we have developed an integrated modeling framework consisting of a statistical climate model, a crop rotation model, a bio-physical process model, a portfolio optimization model, the computation of the economic value of climate information, and a spatial hot spot analysis and applied it to the context of water stress management in crop production in Austria. Results from the integrated modeling framework show that the average economic value of climate information ranges between 13 and 99 €/ha for Austrian cropland, depending on the scenario of multi-seasonal dry spells and the farmers’ risk aversion level. On average, the value of climate information is highest on flat and productive soils, for root and oil crops, under more extreme multi-seasonal dry spells, and if farmers are highly risk averse. Quantifying the value of climate information may guide data provision efforts and highlight agricultural production regions, which would particularly benefit from such information to improve water stress management.

Suggested Citation

  • Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
  • Handle: RePEc:eee:agiwat:v:221:y:2019:i:c:p:430-448
    DOI: 10.1016/j.agwat.2019.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418317347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
    3. Schönhart, Martin & Mitter, Hermine & Schmid, Erwin & Heinrich, Georg & Gobiet, Andreas, 2014. "Integrated Analysis of Climate Change Impacts and Adaptation Measures in Austrian Agriculture," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 63(03), pages 1-21, September.
    4. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    5. Jean-Paul Chavas & Rulon D. Pope, 1984. "Information: Its Measurement and Valuation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(5), pages 705-710.
    6. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review," Agricultural Water Management, Elsevier, vol. 179(C), pages 18-33.
    7. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623, January.
    8. Kirchner, Mathias & Schmidt, Johannes & Kindermann, Georg & Kulmer, Veronika & Mitter, Hermine & Prettenthaler, Franz & Rüdisser, Johannes & Schauppenlehner, Thomas & Schönhart, Martin & Strauss, Fran, 2015. "Ecosystem services and economic development in Austrian agricultural landscapes — The impact of policy and climate change scenarios on trade-offs and synergies," Ecological Economics, Elsevier, vol. 109(C), pages 161-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jost, Elisabeth & Schönhart, Martin & Mitter, Hermine & Zoboli, Ottavia & Schmid, Erwin, 2025. "Integrated modelling of fertilizer and climate change scenario impacts on agricultural production and nitrogen losses in Austria," Ecological Economics, Elsevier, vol. 227(C).
    2. Apostolos Arsenopoulos & Vangelis Marinakis & Konstantinos Koasidis & Andriana Stavrakaki & John Psarras, 2020. "Assessing Resilience to Energy Poverty in Europe through a Multi-Criteria Analysis Framework," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    3. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    2. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, K. V. G. K., 2008. "The lower Krishna Basin trajectory: relationships between basin development and downstream environmental degradation," IWMI Research Reports H041463, International Water Management Institute.
    3. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    4. Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
    5. Ireneusz Cymes & Ewa Dragańska & Zbigniew Brodziński, 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change," Agriculture, MDPI, vol. 12(6), pages 1-14, May.
    6. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    7. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    8. Bastiaanssen, W. G. M. & Chandrapala, L., 2003. "Water balance variability across Sri Lanka for assessing agricultural and environmental water use," Agricultural Water Management, Elsevier, vol. 58(2), pages 171-192, February.
    9. Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
    10. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    11. Jeanne PERRIER, 2019. "Les lois palestiniennes de l’eau : entre centralisation, décentralisation et mise en invisibilité," Working Paper f2757814-3bd9-4fc1-970d-2, Agence française de développement.
    12. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    13. Muhammad Usman & Talha Mahmood & Christopher Conrad & Habib Ullah Bodla, 2020. "Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    14. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    15. Mainuddin, M., 2010. "Water-use accounts in CPWF basins: simple water-use accounting of the Yellow River Basin," IWMI Working Papers H042849, International Water Management Institute.
    16. Vyshpolsky, F. & Mukhamedjanov, K. & Bekbaev, U. & Ibatullin, S. & Yuldashev, T. & Noble, A.D. & Mirzabaev, A. & Aw-Hassan, A. & Qadir, M., 2010. "Optimizing the rate and timing of phosphogypsum application to magnesium-affected soils for crop yield and water productivity enhancement," Agricultural Water Management, Elsevier, vol. 97(9), pages 1277-1286, September.
    17. Singh, Uttam Kumar & Ren, Li & Kang, Shaozhong, 2010. "Simulation of soil water in space and time using an agro-hydrological model and remote sensing techniques," Agricultural Water Management, Elsevier, vol. 97(8), pages 1210-1220, August.
    18. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    19. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance," Agricultural Water Management, Elsevier, vol. 98(10), pages 1569-1576, August.
    20. Amarasinghe, Upali A. & Smakhtin, Vladimir U. & Sharma, Bharat R. & Eriyagama, Nishadi, 2010. "Bailout with white revolution or sink deeper?: groundwater depletion and impacts in the Moga District of Punjab, India," IWMI Research Reports 108672, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:221:y:2019:i:c:p:430-448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.