IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v44y2014i1p51-64.html
   My bibliography  Save this article

Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data

Author

Listed:
  • Mohammad Alauddin
  • Upali A. Amarasinghe
  • Bharat R. Sharma

Abstract

The bulk of the water productivity (WP) literature has focused on static cross-sectional analysis with inadequate attention given to long-term, time series analysis, either at the country level or at a lower level of aggregation (e.g., district). The present study fills this gap by analyzing WP in Bangladesh using panel data of 21 districts over 37 years (1968ó2004) divided into three phases. It estimated levels of, and trends in, WPs of one irrigated rice (rabi) crop, and two mainly rain-fed (kharif) rice crops, with occasional supplementary irrigation. Also examined were WPs for rice crops in irrigated and rain-fed ecosystems. The findings indicated that WP levels in Bangladesh were significantly lower than that by global standards. Overall, WP growth rates varied significantly among districts and between phases with no consistent pattern emerging. On the whole, WPs trended upwards while differing widely among districts and between phases, seasons, ecosystems and areas differentiated by physiographic characteristics. The 1980s represented a period of stagnation. Drought-prone areas grew faster while salinity-prone areas grew slower vis-à-vis non-drought and non-saline areas. In the Ganges-dependent area, WP grew faster than that in the non-Ganges-dependent area. Rice production in Bangladesh represented a highly groundwater-dependent and fossil fuel-using process with significant environmental implications suggesting that WP growth may be unsustainable. Sustaining WP growth required a range of market and non-market-based policy options.

Suggested Citation

  • Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
  • Handle: RePEc:eee:ecanpo:v:44:y:2014:i:1:p:51-64
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592614000137
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alauddin, Mohammad & Sharma, Bharat R., 2013. "Inter-district rice water productivity differences in Bangladesh: An empirical exploration and implications," Ecological Economics, Elsevier, vol. 93(C), pages 210-218.
    2. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    3. Barker, Randolph & Dawe, D. & Inocencio, A., 2003. "Economics of water productivity in managing water for agriculture," Book Chapters,, International Water Management Institute.
    4. Cai, X. & Rosegrant, M. W., 2003. "World water productivity: current situation and future options," Book Chapters,, International Water Management Institute.
    5. Penning de Vries, Fritz & Acquay, Herbert & Molden, David & Scherr, Sarah & Valentin, Christian & Cofie, Olufunke, 2008. "Learning from bright spots to enhance food security and to combat degradation of water and land resources," Book Chapters,, International Water Management Institute.
    6. Sanzidur Rahman & Ruhul Salim, 2013. "Six Decades of Total Factor Productivity Change and Sources of Growth in Bangladesh Agriculture (1948–2008)," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(2), pages 275-294, June.
    7. Alauddin, Mohammad & Quiggin, John, 2008. "Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options," Ecological Economics, Elsevier, vol. 65(1), pages 111-124, March.
    8. Amarasinghe, Upali A. & Shah, Tushaar & Singh, Om Prakash, 2007. "Changing consumption patterns: implications on food and water demand in India," IWMI Research Reports 44517, International Water Management Institute.
    9. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    10. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    11. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    12. Cai, X. & Rosegrant, M. W., 2003. "World water productivity: current situation and future options," IWMI Books, Reports H032641, International Water Management Institute.
    13. Molden, D. & Murray-Rust, H. & Sakthivadivel, R. & Makin, I., 2003. "A water-productivity framework for understanding and action," IWMI Books, Reports H032632, International Water Management Institute.
    14. Giordano, Mark & Villholth, Karen, 2007. "The agricultural groundwater revolution: opportunities and threats to development," IWMI Books, Reports H040039, International Water Management Institute.
    15. Mohammad Alauddin & Mosharaff Hossain, 2001. "Environment and Agriculture in a Developing Economy," Books, Edward Elgar Publishing, number 1718.
    16. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Russian," IWMI Books, Reports H041260, International Water Management Institute.
    17. Derek Headey & Mohammad Alauddin & D.S. Prasada Rao, 2010. "Explaining agricultural productivity growth: an international perspective," Agricultural Economics, International Association of Agricultural Economists, vol. 41(1), pages 1-14, January.
    18. Jalota, S.K. & Singh, K.B. & Chahal, G.B.S. & Gupta, R.K. & Chakraborty, Somsubhra & Sood, Anil & Ray, S.S. & Panigrahy, S., 2009. "Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study," Agricultural Water Management, Elsevier, vol. 96(7), pages 1096-1104, July.
    19. Penning de Vries, F. & Acquay, H. & Molden, David & Scherr, S. & Valentin, C. & Cofie, Olufunke, 2008. "Learning from bright spots to enhance food security and to combat degradation of water and land resources," IWMI Books, Reports H041590, International Water Management Institute.
    20. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    21. Cai, X.L. & Sharma, B.R., 2010. "Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin," Agricultural Water Management, Elsevier, vol. 97(2), pages 309-316, February.
    22. Shah, Tushaar, 2007. "The groundwater economy of South Asia: an assessment of size, significance and socio-ecological impacts," IWMI Books, Reports H039669, International Water Management Institute.
    23. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    24. Shah, Tushaar, 2007. "The groundwater economy of South Asia: an assessment of size, significance and socio-ecological impacts," Book Chapters,, International Water Management Institute.
    25. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    26. Mahajan, G. & Bharaj, T.S. & Timsina, J., 2009. "Yield and water productivity of rice as affected by time of transplanting in Punjab, India," Agricultural Water Management, Elsevier, vol. 96(3), pages 525-532, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Mahboob, M. Golam, 2023. "Simulation of water productivity of wheat in northwestern Bangladesh using multi-satellite data," Agricultural Water Management, Elsevier, vol. 281(C).
    2. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Malone, Sparkle L. & Alam, Md. Khairul & Loescher, Henry W. & Bazzaz, Mahfuz, 2020. "Alternate furrow irrigation can maintain grain yield and nutrient content, and increase crop water productivity in dry season maize in sub-tropical climate of South Asia," Agricultural Water Management, Elsevier, vol. 238(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
    2. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    3. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    4. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    5. Upali A. Amarasinghe & R.P. S. Malik & Bharat R. Sharma, 2010. "Overcoming growing water scarcity: Exploring potential improvements in water productivity in India," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 188-199, August.
    6. Haileslassie, Amare & Peden, Don & Gebreselassie, Solomon & Amede, Tilahun & Descheemaeker, Katrien, 2009. "Livestock water productivity in mixed crop-livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement," Agricultural Systems, Elsevier, vol. 102(1-3), pages 33-40, October.
    7. Alauddin, Mohammad & Sharma, Bharat R., 2013. "Inter-district rice water productivity differences in Bangladesh: An empirical exploration and implications," Ecological Economics, Elsevier, vol. 93(C), pages 210-218.
    8. Susanne Scheierling & David O. Treguer & James F. Booker, 2016. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    9. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    10. Hossain, Istiaque & Alam, Md. Mahmudul & Siwar, Chamhuri & Bin Mokhtar, Mazlin, 2019. "Measurement of Water Productivity in Seasonal Floodplain Beel Area," SocArXiv q3ayc, Center for Open Science.
    11. Erenstein, Olaf, 2009. "Comparing water management in rice-wheat production systems in Haryana, India and Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 96(12), pages 1799-1806, December.
    12. Cai, X.L. & Sharma, B.R., 2010. "Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin," Agricultural Water Management, Elsevier, vol. 97(2), pages 309-316, February.
    13. Scheierling, Susanne M. & Treguer, David O. & Booker, James F., 2015. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205677, Agricultural and Applied Economics Association.
    14. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    15. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    16. Monaco, Federica & Sali, Guido, 2018. "How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data," Agricultural Water Management, Elsevier, vol. 195(C), pages 47-57.
    17. Cook, Simon, 2006. "Agricultural water productivity: issues, concepts and approaches," IWMI Working Papers H039744, International Water Management Institute.
    18. Scheierling, S. M., 2014. "How to assess agricultural water productivity?: looking for water in the agricultural productivity and efficiency literature," IWMI Working Papers H046876, International Water Management Institute.
    19. Hossain, Istiaque & Siwar, Chamhuri & Bin Mokhta, Mazlin & Dey, Madan Mohan & Jaafar, Abd. Hamid & Alam, Md. Mahmudul, 2019. "Water Productivity for Boro Rice Production: Study on floodplain Beels in Rajshahi, Bangladesh," OSF Preprints tm9na, Center for Open Science.
    20. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:44:y:2014:i:1:p:51-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.