IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v179y2017icp55-63.html
   My bibliography  Save this article

Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China

Author

Listed:
  • Li, Xiaolin
  • Tong, Ling
  • Niu, Jun
  • Kang, Shaozhong
  • Du, Taisheng
  • Li, Sien
  • Ding, Risheng

Abstract

The analysis of irrigation water productivity (IWP) can provide insights into taking measures to improve water-efficient irrigation. This study examines the temporal IWP trend of cereal crops over the Hexi Corridor in Northwest China by employing descriptive analysis, trend analysis, and change-point analysis. Spatial patterns of different typical years (dry, average and wet year) are analyzed by the spatial interpolation method and spatial autocorrelation method. The regional average IWP significantly increased from 0.51kg/m3 to 1.29kg/m3 during the period of 1981–2012 and no change point was detected. Spatial distribution of IWP reveals that IWP was higher in the plain oasis region, while lower in the mountainous and desert oasis region. The IWP ranged from 0.72 to 1.60kg/m3 for the dry year 2004, 0.77–1.66kg/m3 for the average year 2008, and 0.81–1.93kg/m3 for the wet year 2011, respectively. No significant spatial autocorrelation was observed. By 2012, there were still 3.9% of the area with IWP less than 1.0kg/m3, which implied an opportunity to increase IWP through better water management practices. The grey relational analysis of the influences of major driving factors (area supported by unit of irrigation water use, fertilization, agricultural film, agricultural pesticide, and annual mean temperature) on IWP showed that area supported by unit of irrigation water use, fertilization, and agricultural film had dominant impacts during the whole period.

Suggested Citation

  • Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
  • Handle: RePEc:eee:agiwat:v:179:y:2017:i:c:p:55-63
    DOI: 10.1016/j.agwat.2016.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416302566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Bo & Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2011. "Impacts of climate variability on reference evapotranspiration over 58 years in the Haihe river basin of north China," Agricultural Water Management, Elsevier, vol. 98(10), pages 1660-1670, August.
    2. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    3. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    4. Ali, M.H. & Talukder, M.S.U., 2008. "Increasing water productivity in crop production--A synthesis," Agricultural Water Management, Elsevier, vol. 95(11), pages 1201-1213, November.
    5. Zwart, Sander J. & Bastiaanssen, Wim G.M., 2007. "SEBAL for detecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems," Agricultural Water Management, Elsevier, vol. 89(3), pages 287-296, May.
    6. Yan, Nana & Wu, Bingfang, 2014. "Integrated spatial–temporal analysis of crop water productivity of winter wheat in Hai Basin," Agricultural Water Management, Elsevier, vol. 133(C), pages 24-33.
    7. Passioura, John, 2006. "Increasing crop productivity when water is scarce--from breeding to field management," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 176-196, February.
    8. Ines, Amor V. M. & Gupta, Ashim Das & Loof, Rainer, 2002. "Application of GIS and crop growth models in estimating water productivity," Agricultural Water Management, Elsevier, vol. 54(3), pages 205-225, April.
    9. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    10. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    11. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    12. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    13. Wesseling, J.G. & Feddes, R.A., 2006. "Assessing crop water productivity from field to regional scale," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 30-39, November.
    14. Bastiaanssen, W. & Ahmad, Mobin-ud -Din & Tahir, Z., 2003. "Upscaling water productivity in irrigated agriculture using remote-sensing and GIS technologies," IWMI Books, Reports H032648, International Water Management Institute.
    15. Molden, D. & Murray-Rust, H. & Sakthivadivel, R. & Makin, I., 2003. "A water-productivity framework for understanding and action," IWMI Books, Reports H032632, International Water Management Institute.
    16. Oweis, T. Y. & Hachum, A. Y., 2003. "Improving water productivity in the dry areas of West Asia and North Africa," IWMI Books, Reports H032642, International Water Management Institute.
    17. Zoebl, Dirk, 2006. "Is water productivity a useful concept in agricultural water management?," Agricultural Water Management, Elsevier, vol. 84(3), pages 265-273, August.
    18. Seckler, D. & Molden, D. & Sakthivadivel, R., 2003. "The concept of efficiency in water resources management and policy," IWMI Books, Reports H032634, International Water Management Institute.
    19. Chuang-lin Fang & Chao Bao & Jin-chuan Huang, 2007. "Management Implications to Water Resources Constraint Force on Socio-economic System in Rapid Urbanization: A Case Study of the Hexi Corridor, NW China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1613-1633, September.
    20. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    21. Bao, Chao & Fang, Chuang-lin, 2007. "Water resources constraint force on urbanization in water deficient regions: A case study of the Hexi Corridor, arid area of NW China," Ecological Economics, Elsevier, vol. 62(3-4), pages 508-517, May.
    22. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    23. Li, Hongjun & Zheng, Li & Lei, Yuping & Li, Chunqiang & Liu, Zhijun & Zhang, Shengwei, 2008. "Estimation of water consumption and crop water productivity of winter wheat in North China Plain using remote sensing technology," Agricultural Water Management, Elsevier, vol. 95(11), pages 1271-1278, November.
    24. Bastiaanssen, W. G. M. & Ahmad, Mobin-ud-Din & Tahir, Z., 2003. "Upscaling water productivity in irrigated agriculture using remote-sensing and GIS technologies," Book Chapters,, International Water Management Institute.
    25. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "A global benchmark map of water productivity for rainfed and irrigated wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1617-1627, October.
    26. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    27. Oktem, Abdullah & Simsek, Mehmet & Oktem, A. Gulgun, 2003. "Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region: I. Water-yield relationship," Agricultural Water Management, Elsevier, vol. 61(1), pages 63-74, June.
    28. Mainuddin, Mohammed & Kirby, Mac, 2009. "Spatial and temporal trends of water productivity in the lower Mekong River Basin," Agricultural Water Management, Elsevier, vol. 96(11), pages 1567-1578, November.
    29. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelley, Jason & Olson, Bailey, 2022. "Interannual variability of water productivity on the Eastern Snake Plain in Idaho, United States," Agricultural Water Management, Elsevier, vol. 265(C).
    2. Jha, Shiva K. & Gao, Yang & Liu, Hao & Huang, Zhongdong & Wang, Guangshuai & Liang, Yueping & Duan, Aiwang, 2017. "Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China," Agricultural Water Management, Elsevier, vol. 182(C), pages 139-150.
    3. Yu, Haijiao & Wen, Xiaohu & Wu, Min & Sheng, Danrui & Wu, Jun & Zhao, Ying, 2022. "Data-based groundwater quality estimation and uncertainty analysis for irrigation agriculture," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Nong, Yixin & Yin, Changbin & Yi, Xiaoyan & Ren, Jing & Chien, Hsiaoping, 2021. "Smallholder farmer preferences for diversifying farming with cover crops of sustainable farm management: A discrete choice experiment in Northwest China," Ecological Economics, Elsevier, vol. 186(C).
    5. Zhu, Guofeng & Yong, Leilei & Zhang, Zhuanxia & Sun, Zhigang & Sang, Liyuan & Liu, Yuwei & Wang, Lei & Guo, Huiwen, 2021. "Infiltration process of irrigation water in oasis farmland and its enlightenment to optimization of irrigation mode: Based on stable isotope data," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    2. Mainuddin, Mohammed & Maniruzzaman, Md. & Alam, Md. Mahbubul & Mojid, Mohammad A. & Schmidt, Erik J. & Islam, Md. Towfiqul & Scobie, Michael, 2020. "Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 240(C).
    3. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    4. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    5. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    6. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    7. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    8. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    9. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    10. Monaco, Federica & Sali, Guido, 2018. "How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data," Agricultural Water Management, Elsevier, vol. 195(C), pages 47-57.
    11. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    12. Mainuddin, Mohammed & Kirby, Mac, 2009. "Spatial and temporal trends of water productivity in the lower Mekong River Basin," Agricultural Water Management, Elsevier, vol. 96(11), pages 1567-1578, November.
    13. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    14. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    15. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    16. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    17. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    18. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    19. Susanne Scheierling & David O. Treguer & James F. Booker, 2016. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    20. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:179:y:2017:i:c:p:55-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.