IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v21y2007i9p1613-1633.html
   My bibliography  Save this article

Management Implications to Water Resources Constraint Force on Socio-economic System in Rapid Urbanization: A Case Study of the Hexi Corridor, NW China

Author

Listed:
  • Chuang-lin Fang
  • Chao Bao
  • Jin-chuan Huang

Abstract

As water has become the shortest resources in arid, semi-arid and rapid urbanization areas when the water resources utilization has approached or exceeded its threshold, water resources system slows down the socio-economic growth rate and destroys the projected targets to eradicate poverty and realize sustainable development. We put forward the concept of Water Resources Constraint Force (WRCF) and constructed a conceptual framework on it. Conceptual models on the interactions and feedbacks between water resources and socio-economic systems in water scarce regions or river basins indicate that, if the socio-economic system always aims at sustainable development, WRCF will vary with a normal distribution curve. Rational water resources management plays an important role on this optimistic variation law. Specifically, Water Demand Management (WDM) and Integrated Water Resources Management (IWRM) are considered as an important perspective and approach to alleviate WRCF. A case study in the Hexi Corridor of NW China indicates that, water resources management has great impact on WRCF both in Zhangye and Wuwei Region, and also the river basins where they are located. The drastic transformation of water resources management pattern and the experimental project – Building Water-saving Society in Zhangye Region alleviated the WRCF to some extent. However, from a water resources management view, WRCF in Zhangye Region still belongs to the severe constraint type. It will soon step into the very severe constraint type. In order to shorten the periods from the very severe constraint type finally to the slight constraint type, WDM and IWRM in the Hei River Basin should be improved as soon as possible. However, in the Shiyang River Basin, WRCF belongs to the very severe constraint type at present due to poor water resources management in the past. Though the socio-economic system adapted itself and alleviated the WRCF to some extent, the Shiyang River Basin had to transform the water supply management pattern to WDM, and seek IWRM in recent years. It is concluded that WDM and IWRM is a natural selection to alleviate the WRCF on the socio-economic system and realize sustainable development. Copyright Springer Science+Business Media, Inc. 2007

Suggested Citation

  • Chuang-lin Fang & Chao Bao & Jin-chuan Huang, 2007. "Management Implications to Water Resources Constraint Force on Socio-economic System in Rapid Urbanization: A Case Study of the Hexi Corridor, NW China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1613-1633, September.
  • Handle: RePEc:spr:waterr:v:21:y:2007:i:9:p:1613-1633
    DOI: 10.1007/s11269-006-9117-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-006-9117-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-006-9117-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Good, David H. & Reuveny, Rafael, 2006. "The fate of Easter Island: The limits of resource management institutions," Ecological Economics, Elsevier, vol. 58(3), pages 473-490, June.
    2. Irmi Seidl & Clem A. Tisdell, 2003. "Carrying capacity reconsidered: from Malthus' population theory to cultural carrying capacity," Chapters, in: Ecological and Environmental Economics, chapter 13, pages 192-206, Edward Elgar Publishing.
    3. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    4. Guan, Dabo & Hubacek, Klaus, 2007. "Assessment of regional trade and virtual water flows in China," Ecological Economics, Elsevier, vol. 61(1), pages 159-170, February.
    5. Mahdi Zarghaami, 2006. "Integrated Water Resources Management in Polrud Irrigation System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(2), pages 215-225, April.
    6. Khan, Shahbaz & Tariq, Rana & Yuanlai, Cui & Blackwell, J., 2006. "Can irrigation be sustainable?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 87-99, February.
    7. Junliang Zhang, 2006. "Barriers to Water Markets in China's Heihe River Basin," EEPSEA Research Report rr2006022, Economy and Environment Program for Southeast Asia (EEPSEA), revised Feb 2006.
    8. Okadera, Tomohiro & Watanabe, Masataka & Xu, Kaiqin, 2006. "Analysis of water demand and water pollutant discharge using a regional input-output table: An application to the City of Chongqing, upstream of the Three Gorges Dam in China," Ecological Economics, Elsevier, vol. 58(2), pages 221-237, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    2. Xuedong Liang & Jiacheng Li & Gengxuan Guo & Sipan Li & Qunxi Gong, 2023. "Urban water resource utilization efficiency based on SBM-undesirable–Gini coefficient–kernel density in Gansu Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13015-13034, November.
    3. Sevilla Jiménez, Martín & Torregrosa, Teresa & Moreno, Luis, 2010. "Un Panorama sobre la Economía del Agua/An Overview on Water Economy," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 265-304, Agosto.
    4. Lenzen, Manfred & Bhaduri, Anik & Moran, Daniel & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2012. "The role of scarcity in global virtual water flows," Discussion Papers 133478, University of Bonn, Center for Development Research (ZEF).
    5. Kaune, Alexander & Werner, Micha & Rodríguez, Erasmo & Karimi, Poolad & de Fraiture, Charlotte, 2017. "A novel tool to assess available hydrological information and the occurrence of sub-optimal water allocation decisions in large irrigation districts," Agricultural Water Management, Elsevier, vol. 191(C), pages 229-238.
    6. Bao, Chao & Fang, Chuang-lin, 2007. "Water resources constraint force on urbanization in water deficient regions: A case study of the Hexi Corridor, arid area of NW China," Ecological Economics, Elsevier, vol. 62(3-4), pages 508-517, May.
    7. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input–output analysis for China: A survey of the literature," Energy Economics, Elsevier, vol. 48(C), pages 81-88.
    8. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    9. Bian, Yiwen & Yan, Shuai & Xu, Hao, 2014. "Efficiency evaluation for regional urban water use and wastewater decontamination systems in China: A DEA approach," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 15-23.
    10. Veisi, Hadi & Deihimfard, Reza & Shahmohammadi, Alireza & Hydarzadeh, Yasoub, 2022. "Application of the analytic hierarchy process (AHP) in a multi-criteria selection of agricultural irrigation systems," Agricultural Water Management, Elsevier, vol. 267(C).
    11. Huang, Wei & Corbett, James J. & Jin, Di, 2015. "Regional economic and environmental analysis as a decision support for marine spatial planning in Xiamen," Marine Policy, Elsevier, vol. 51(C), pages 555-562.
    12. Alexandros Gkatsikos & Konstadinos Mattas & Efstratios Loizou & Dimitrios Psaltopoulos, 2022. "The Neglected Water Rebound Effect of Income and Employment Growth," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 379-398, January.
    13. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    14. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    15. Lauri Ahopelto & Noora Veijalainen & Joseph H. A. Guillaume & Marko Keskinen & Mika Marttunen & Olli Varis, 2019. "Can There be Water Scarcity with Abundance of Water? Analyzing Water Stress during a Severe Drought in Finland," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    16. James A. Brander, 2007. "Viewpoint: Sustainability: Malthus revisited?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(1), pages 1-38, February.
    17. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    18. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    19. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    20. Uche T. Okpara & Lindsay C. Stringer & Andrew J. Dougill & Mohammed D. Bila, 2015. "Conflicts about water in Lake Chad: Are environmental, vulnerability and security issues linked?," Progress in Development Studies, , vol. 15(4), pages 308-325, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:21:y:2007:i:9:p:1613-1633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.