IDEAS home Printed from https://ideas.repec.org/p/ags/ubzefd/133478.html
   My bibliography  Save this paper

The role of scarcity in global virtual water flows

Author

Listed:
  • Lenzen, Manfred
  • Bhaduri, Anik
  • Moran, Daniel
  • Kanemoto, Keiichiro
  • Bekchanov, Maksud
  • Geschke, Arne
  • Foran, Barney

Abstract

Recent analyses of the evolution and structure of trade in virtual water revealed that the number of trade connections and volume of virtual water trade have more than doubled over the past two decades, and that developed countries increasingly draw on the rest of the world to alleviate the pressure on their domestic water resources. Our work builds on these studies, but fills three important gaps in the research on global virtual water trade. First, we note that in previous studies virtual water volumes are lumped together from countries experiencing vastly different degrees of water scarcity. We therefore incorporate water scarcity into assessments of virtual water flows. Second, we note that some previous studies assess virtual water networks only in terms of immediate water used for food production, but omit indirect virtual water used throughout the supply chains underlying all traded goods. In our analysis we therefore use input-output analysis to also include indirect virtual water. We note existing conflicting views about whether trade in virtual water can lead to overall savings in global water resources. We re-visit the Heckscher-Ohlin Theorem in the context of direct as well as indirect virtual water in order to determine whether international trade can be seen as a feasible demand management instrument in alleviating water scarcity. We find that the structure of global virtual water networks changes significantly after adjusting for water scarcity. In addition, when indirect virtual water is appraised the Heckscher-Ohlin Theorem can be validated.

Suggested Citation

  • Lenzen, Manfred & Bhaduri, Anik & Moran, Daniel & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2012. "The role of scarcity in global virtual water flows," Discussion Papers 133478, University of Bonn, Center for Development Research (ZEF).
  • Handle: RePEc:ags:ubzefd:133478
    DOI: 10.22004/ag.econ.133478
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/133478/files/DP169.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.133478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    2. Jan Oosterhaven & Dirk Stelder & Satoshi Inomata, 2008. "Estimating International Interindustry Linkages: Non-survey Simulations of the Asian-Pacific Economy," Economic Systems Research, Taylor & Francis Journals, vol. 20(4), pages 395-414.
    3. Guan, Dabo & Hubacek, Klaus, 2007. "Assessment of regional trade and virtual water flows in China," Ecological Economics, Elsevier, vol. 61(1), pages 159-170, February.
    4. Osmo Forssell & Karen Polenske, 1998. "Introduction: Input-Output and the Environment," Economic Systems Research, Taylor & Francis Journals, vol. 10(2), pages 91-97.
    5. Edward B. Barbier, 2004. "Water and Economic Growth," The Economic Record, The Economic Society of Australia, vol. 80(248), pages 1-16, March.
    6. Defourny, Jacques & Thorbecke, Erik, 1984. "Structural Path Analysis and Multiplier Decomposition within a Social Accounting Matrix Framework," Economic Journal, Royal Economic Society, vol. 94(373), pages 111-136, March.
    7. M. Kumar & O. Singh, 2005. "Virtual Water in Global Food and Water Policy Making: Is There a Need for Rethinking?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 759-789, December.
    8. Thomas Wiedmann, 2009. "Editorial: Carbon Footprint And Input-Output Analysis - An Introduction," Economic Systems Research, Taylor & Francis Journals, vol. 21(3), pages 175-186.
    9. Erik Dietzenbacher & Esther Velazquez, 2007. "Analysing Andalusian Virtual Water Trade in an Input-Output Framework," Regional Studies, Taylor & Francis Journals, vol. 41(2), pages 185-196.
    10. Michael Sonis & Geoffrey J. D. Hewings, 1998. "original: Economic complexity as network complication: Multiregional input-output structural path analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 32(3), pages 407-436.
    11. Okadera, Tomohiro & Watanabe, Masataka & Xu, Kaiqin, 2006. "Analysis of water demand and water pollutant discharge using a regional input-output table: An application to the City of Chongqing, upstream of the Three Gorges Dam in China," Ecological Economics, Elsevier, vol. 58(2), pages 221-237, June.
    12. Glen Peters & Robbie Andrew & James Lennox, 2011. "Constructing An Environmentally-Extended Multi-Regional Input-Output Table Using The Gtap Database," Economic Systems Research, Taylor & Francis Journals, vol. 23(2), pages 131-152.
    13. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
    14. Duarte, Rosa & Sanchez-Choliz, Julio & Bielsa, Jorge, 2002. "Water use in the Spanish economy: an input-output approach," Ecological Economics, Elsevier, vol. 43(1), pages 71-85, November.
    15. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    16. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    17. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    18. Velazquez, Esther, 2006. "An input-output model of water consumption: Analysing intersectoral water relationships in Andalusia," Ecological Economics, Elsevier, vol. 56(2), pages 226-240, February.
    19. Robert Dixon, 1996. "Inter‐Industry Transactions and Input‐Output Analysis," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 29(3), pages 327-336, July.
    20. Ansink, Erik, 2010. "Refuting two claims about virtual water trade," Ecological Economics, Elsevier, vol. 69(10), pages 2027-2032, August.
    21. Munksgaard, Jesper & Pedersen, Klaus Alsted, 2001. "CO2 accounts for open economies: producer or consumer responsibility?," Energy Policy, Elsevier, vol. 29(4), pages 327-334, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian John Reynolds & Miranda Mirosa & Brent Clothier, 2016. "New Zealand’s Food Waste: Estimating the Tonnes, Value, Calories and Resources Wasted," Agriculture, MDPI, Open Access Journal, vol. 6(1), pages 1-15, February.
    2. Fracasso, Andrea, 2014. "A gravity model of virtual water trade," Ecological Economics, Elsevier, vol. 108(C), pages 215-228.
    3. Reynolds, Christian John & Piantadosi, Julia & Buckley, Jonathan David & Weinstein, Philip & Boland, John, 2015. "Evaluation of the environmental impact of weekly food consumption in different socio-economic households in Australia using environmentally extended input–output analysis," Ecological Economics, Elsevier, vol. 111(C), pages 58-64.
    4. repec:gam:jagris:v:6:y:2016:i:1:p:9:d:64291 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maaike Bouwmeester & Jan Oosterhaven, 2013. "Specification and Aggregation Errors in Environmentally Extended Input–Output Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 307-335, November.
    2. Yu, Dejian & Xu, Chao, 2017. "Mapping research on carbon emissions trading: a co-citation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1314-1322.
    3. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    4. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, Open Access Journal, vol. 12(8), pages 1-26, April.
    5. Marques, Alexandra & Rodrigues, João & Domingos, Tiago, 2013. "International trade and the geographical separation between income and enabled carbon emissions," Ecological Economics, Elsevier, vol. 89(C), pages 162-169.
    6. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
    7. Eisenmenger, Nina & Wiedenhofer, Dominik & Schaffartzik, Anke & Giljum, Stefan & Bruckner, Martin & Schandl, Heinz & Wiedmann, Thomas O. & Lenzen, Manfred & Tukker, Arnold & Koning, Arjan, 2016. "Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results," Ecological Economics, Elsevier, vol. 128(C), pages 177-186.
    8. Mubako, Stanley & Lahiri, Sajal & Lant, Christopher, 2013. "Input–output analysis of virtual water transfers: Case study of California and Illinois," Ecological Economics, Elsevier, vol. 93(C), pages 230-238.
    9. Guo, Ju’e & Zhang, Zengkai & Meng, Lei, 2012. "China’s provincial CO2 emissions embodied in international and interprovincial trade," Energy Policy, Elsevier, vol. 42(C), pages 486-497.
    10. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    11. Banie Naser Outchiri & Jie He, 2020. "Technical gap, trade partners and product mix evolution: how trading with China affects global CO2 emissions," Cahiers de recherche 20-07, Departement d'Economique de l'École de gestion à l'Université de Sherbrooke.
    12. Muñoz, Pablo & Steininger, Karl W., 2010. "Austria's CO2 responsibility and the carbon content of its international trade," Ecological Economics, Elsevier, vol. 69(10), pages 2003-2019, August.
    13. Levitt, Clinton J. & Pedersen, Morten S. & Sørensen, Anders, 2015. "Examining the efforts of a small, open economy to reduce carbon emissions: The case of Denmark," Ecological Economics, Elsevier, vol. 119(C), pages 94-106.
    14. Court, Christa D., 2012. "Enhancing U.S. hazardous waste accounting through economic modeling," Ecological Economics, Elsevier, vol. 83(C), pages 79-89.
    15. Zhang, Wencheng & Peng, Shuijun & Sun, Chuanwang, 2015. "CO2 emissions in the global supply chains of services: An analysis based on a multi-regional input–output model," Energy Policy, Elsevier, vol. 86(C), pages 93-103.
    16. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    17. Hermannsson, Kristinn & McIntyre, Stuart G., 2014. "Local consumption and territorial based accounting for CO2 emissions," Ecological Economics, Elsevier, vol. 104(C), pages 1-11.
    18. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    19. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    20. Ding, Tao & Ning, Yadong & Zhang, Yan, 2018. "The contribution of China’s bilateral trade to global carbon emissions in the context of globalization," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 78-88.

    More about this item

    Keywords

    Environmental Economics and Policy; International Relations/Trade; Resource /Energy Economics and Policy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ubzefd:133478. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/zefbnde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/zefbnde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.