IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v19y2017i3d10.1007_s10668-016-9770-2.html
   My bibliography  Save this article

Virtual water trade in industrial products: evidence from Malaysia

Author

Listed:
  • A. Hassan

    (Universiti Putra Malaysia)

  • M. Y. Saari

    (Universiti Putra Malaysia
    Universiti Putra Malaysia)

  • T. H. Tengku Ismail

    (Universiti Putra Malaysia)

Abstract

Virtual water embodied in international trade is equivalent to nearly one-third of global water withdrawal, confirming that trade plays a significant role in redistributing global water resources. This paper extends a virtual water analysis by measuring the extent to which virtual water embodied in traded industrial products affects the distribution of global virtual water. The distribution of global virtual water can be improved if trade in industrial products promotes virtual water outflows from water-abundant to water-scarce countries. Analyses were performed using an input–output model that can decompose water consumption into domestic demand and exports by destinations of trade. Focusing on Malaysia, the results indicate that trade in industrial products between Malaysia and its main trading partners have a limited capacity to improve the distribution of global virtual water. This limitation can be due to two reasons. Firstly, exports of Malaysian industrial products are mainly driven by less water-intensive sectors. Therefore, the amount of virtual water that outflows into other countries is also low. Secondly, trade in Malaysian industrial products largely involves water flows with other water-abundant countries. Only several water-scarce countries benefit from virtual water trade in industrial products with Malaysia, namely the Netherlands, Australia and China.

Suggested Citation

  • A. Hassan & M. Y. Saari & T. H. Tengku Ismail, 2017. "Virtual water trade in industrial products: evidence from Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 877-894, June.
  • Handle: RePEc:spr:endesu:v:19:y:2017:i:3:d:10.1007_s10668-016-9770-2
    DOI: 10.1007/s10668-016-9770-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-016-9770-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-016-9770-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reimer, Jeffrey J., 2012. "On the economics of virtual water trade," Ecological Economics, Elsevier, vol. 75(C), pages 135-139.
    2. Guan, Dabo & Hubacek, Klaus, 2007. "Assessment of regional trade and virtual water flows in China," Ecological Economics, Elsevier, vol. 61(1), pages 159-170, February.
    3. Dennis Wichelns, 2010. "Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2203-2219, August.
    4. Duarte, Rosa & Sanchez-Choliz, Julio & Bielsa, Jorge, 2002. "Water use in the Spanish economy: an input-output approach," Ecological Economics, Elsevier, vol. 43(1), pages 71-85, November.
    5. Hakimian Hassan, 2003. "Water Scarcity and Food Imports: An Emperical Investigation of the 'Virtual Water' Hypothesis in the MENA Region," Review of Middle East Economics and Finance, De Gruyter, vol. 1(1), pages 70-84, January.
    6. Zhao, X. & Chen, B. & Yang, Z.F., 2009. "National water footprint in an input–output framework—A case study of China 2002," Ecological Modelling, Elsevier, vol. 220(2), pages 245-253.
    7. Faye Duchin & Carlos López-Morales, 2012. "Do Water-Rich Regions Have A Comparative Advantage In Food Production? Improving The Representation Of Water For Agriculture In Economic Models," Economic Systems Research, Taylor & Francis Journals, vol. 24(4), pages 371-389, July.
    8. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    9. Erik Dietzenbacher & Esther Velazquez, 2007. "Analysing Andalusian Virtual Water Trade in an Input-Output Framework," Regional Studies, Taylor & Francis Journals, vol. 41(2), pages 185-196.
    10. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2014. "The effect of globalisation on water consumption: A case study of the Spanish virtual water trade, 1849–1935," Ecological Economics, Elsevier, vol. 100(C), pages 96-105.
    11. Ansink, Erik, 2010. "Refuting two claims about virtual water trade," Ecological Economics, Elsevier, vol. 69(10), pages 2027-2032, August.
    12. Gawel, Erik & Bernsen, Kristina, 2011. "What is wrong with virtual water trading?," UFZ Discussion Papers 1/2011, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    13. Maite Aldaya & Pedro Martínez-Santos & M. Llamas, 2010. "Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 941-958, March.
    14. Sayan Serdar, 2003. "H-O for H2O: Can the Heckscher-Ohlin Framework Explain the Role of Free Trade in Distributing Scarce Water Resources Around the Middle East?," Review of Middle East Economics and Finance, De Gruyter, vol. 1(3), pages 21-36, December.
    15. Wichelns, Dennis, 2001. "The role of `virtual water' in efforts to achieve food security and other national goals, with an example from Egypt," Agricultural Water Management, Elsevier, vol. 49(2), pages 131-151, July.
    16. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    17. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    18. M. Falkenmark & J. Rockström & L. Karlberg, 2009. "Present and future water requirements for feeding humanity," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 1(1), pages 59-69, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamad Afkhami & Thomas Bassetti & Hamed Ghoddusi & Filippo Pavesi, 2018. "Virtual Water Trade: The Implications of Capital Scarcity," Working Papers 03/2018, University of Verona, Department of Economics.
    2. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    3. Delbourg, Esther & Dinar, Shlomi, 2020. "The globalization of virtual water flows: Explaining trade patterns of a scarce resource," World Development, Elsevier, vol. 131(C).
    4. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    5. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    6. Lenzen, Manfred & Bhaduri, Anik & Moran, Daniel & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2012. "The role of scarcity in global virtual water flows," Discussion Papers 133478, University of Bonn, Center for Development Research (ZEF).
    7. Esther Velázquez & Cristina Madrid & María Beltrán, 2011. "Rethinking the Concepts of Virtual Water and Water Footprint in Relation to the Production–Consumption Binomial and the Water–Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 743-761, January.
    8. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Han, M.Y. & Chen, G.Q. & Mustafa, M.T. & Hayat, T. & Shao, Ling & Li, J.S. & Xia, X.H. & Ji, Xi, 2015. "Embodied water for urban economy: A three-scale input–output analysis for Beijing 2010," Ecological Modelling, Elsevier, vol. 318(C), pages 19-25.
    10. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    11. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    12. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    13. M. Antonelli & R. Roson & M. Sartori, 2012. "Systemic Input-Output Computation of Green and Blue Virtual Water ‘Flows’ with an Illustration for the Mediterranean Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4133-4146, November.
    14. Song, Jianfeng & Yin, Yali & Xu, Hang & Wang, Yubao & Wu, Pute & Sun, Shikun, 2020. "Drivers of domestic grain virtual water flow: A study for China," Agricultural Water Management, Elsevier, vol. 239(C).
    15. Zhang, Zhuoying & Yang, Hong & Shi, Minjun, 2011. "Analyses of water footprint of Beijing in an interregional input–output framework," Ecological Economics, Elsevier, vol. 70(12), pages 2494-2502.
    16. Xin’er Ning & Yanjun Zhang & Hongbo Xu & Wenxun Dong & Yuanxin Song & Liping Zhang, 2023. "Inter-Industry Transfer of Intermediate Virtual Water Scarcity Risk: The Case of China," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    17. Zhu, Xiaojie & Guo, Ruipeng & Chen, Bin & Zhang, Jing & Hayat, Tasawar & Alsaedi, Ahmed, 2015. "Embodiment of virtual water of power generation in the electric power system in China," Applied Energy, Elsevier, vol. 151(C), pages 345-354.
    18. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    19. Xueting Zhao, 2014. "China's Inter-regional Trade of Virtual Water: a Multi-regional Input-output Modeling," Working Papers Working Paper 2014-04, Regional Research Institute, West Virginia University.
    20. White, David J. & Feng, Kuishuang & Sun, Laixiang & Hubacek, Klaus, 2015. "A hydro-economic MRIO analysis of the Haihe River Basin's water footprint and water stress," Ecological Modelling, Elsevier, vol. 318(C), pages 157-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:19:y:2017:i:3:d:10.1007_s10668-016-9770-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.