IDEAS home Printed from https://ideas.repec.org/p/bcu/iefewp/iefewp74.html
   My bibliography  Save this paper

Unfolding the Potential of the Virtual Water Concept. What is still under debate?

Author

Listed:
  • Marta Antonelli
  • Martina Sartori

Abstract

The concept of virtual water refers to the volume of water used in the production of a commodity or a service. The concept was identified by the geographer Tony Allan in the early 1990s, to draw attention on the global economic processes that ameliorate local water deficits in the MENA region and elsewhere. Since its inception, the virtual water concept has inspired a flourishing literature on how to address global water resource scarcity vis-à-vis commodity production and consumption in a variety of disciplines, but also has been the object of a number of critiques. Against this backdrop, the aim of the study is, first, to conduct a thorough review of the conceptual definition of the concept, its critics and applications. Secondly, to analyse its theoretical underpinnings and, in particular, its relationship with economic theory. The study argues that, despite not being a policy tool itself, the virtual water concept can reveal aspects related to production, consumption and trade in goods which monetary indicators do not capture. Its potential as an indicator for informing decision-making in water management and policy, as well as commodity trade policy, still has to be fully unfolded.

Suggested Citation

  • Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
  • Handle: RePEc:bcu:iefewp:iefewp74
    as

    Download full text from publisher

    File URL: ftp://ftp.unibocconi.it/pub/RePEc/bcu/papers/iefewp74.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Reimer, Jeffrey J., 2012. "On the economics of virtual water trade," Ecological Economics, Elsevier, vol. 75(C), pages 135-139.
    2. Chichilnisky, Graciela, 1994. "North-South Trade and the Global Environment," American Economic Review, American Economic Association, vol. 84(4), pages 851-874, September.
    3. Roberto Roson & Martina Sartori, 2010. "Water Scarcity and Virtual Water Trade in the Mediterranean," Working Papers 2010_08, Department of Economics, University of Venice "Ca' Foscari".
    4. Wichelns, Dennis, 2004. "The policy relevance of virtual water can be enhanced by considering comparative advantages," Agricultural Water Management, Elsevier, vol. 66(1), pages 49-63, April.
    5. Dennis Wichelns, 2010. "Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2203-2219, August.
    6. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    7. Krugman, Paul, 1991. "Increasing Returns and Economic Geography," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 483-499, June.
    8. M. Kumar & O. Singh, 2005. "Virtual Water in Global Food and Water Policy Making: Is There a Need for Rethinking?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 759-789, December.
    9. Krugman, Paul, 1980. "Scale Economies, Product Differentiation, and the Pattern of Trade," American Economic Review, American Economic Association, vol. 70(5), pages 950-959, December.
    10. Fracasso, Andrea & Sartori, Martina & Schiavo, Stefano, 2014. "Determinants of virtual water flows in the Mediterranean," MPRA Paper 60500, University Library of Munich, Germany.
    11. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    12. de Fraiture, Charlotte & Cai, X & Amarasinghe, Upali & Rosegrant, M. & Molden, David, 2004. "Does international cereal trade save water?: the impact of virtual water trade on global water use," IWMI Research Reports H035342, International Water Management Institute.
    13. Fracasso, Andrea, 2014. "A gravity model of virtual water trade," Ecological Economics, Elsevier, vol. 108(C), pages 215-228.
    14. Perry, Chris, 2014. "Water footprints: Path to enlightenment, or false trail?," Agricultural Water Management, Elsevier, vol. 134(C), pages 119-125.
    15. Ansink, Erik, 2010. "Refuting two claims about virtual water trade," Ecological Economics, Elsevier, vol. 69(10), pages 2027-2032, August.
    16. Esther Velázquez & Cristina Madrid & María Beltrán, 2011. "Rethinking the Concepts of Virtual Water and Water Footprint in Relation to the Production–Consumption Binomial and the Water–Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 743-761, January.
    17. Atkinson, Giles & Hamilton, Kirk & Ruta, Giovanni & Van Der Mensbrugghe, Dominique, 2010. "Trade in'virtual carbon': empirical results and implications for policy," Policy Research Working Paper Series 5194, The World Bank.
    18. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    19. Yang, Hong & Zehnder, Alexander J. B., 2002. "Water Scarcity and Food Import: A Case Study for Southern Mediterranean Countries," World Development, Elsevier, vol. 30(8), pages 1413-1430, August.
    20. de Fraiture, Charlotte & Cai, Ximing & Amarasinghe, Upali A. & Rosegrant, Mark W. & Molden, David J., 2004. "Does international cereal trade save water? The impact of virtual water trade on global water use," IWMI Research Reports 92832, International Water Management Institute.
    21. Bouwer, Herman, 2000. "Integrated water management: emerging issues and challenges," Agricultural Water Management, Elsevier, vol. 45(3), pages 217-228, August.
    22. Peter Debaere, 2014. "The Global Economics of Water: Is Water a Source of Comparative Advantage?," American Economic Journal: Applied Economics, American Economic Association, vol. 6(2), pages 32-48, April.
    23. Wichelns, Dennis, 2001. "The role of `virtual water' in efforts to achieve food security and other national goals, with an example from Egypt," Agricultural Water Management, Elsevier, vol. 49(2), pages 131-151, July.
    24. M. Antonelli & R. Roson & M. Sartori, 2012. "Systemic Input-Output Computation of Green and Blue Virtual Water ‘Flows’ with an Illustration for the Mediterranean Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4133-4146, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Brzezina & Katharina Biely & Ariella Helfgott & Birgit Kopainsky & Joost Vervoort & Erik Mathijs, 2017. "Development of Organic Farming in Europe at the Crossroads: Looking for the Way Forward through System Archetypes Lenses," Sustainability, MDPI, Open Access Journal, vol. 9(5), pages 1-23, May.
    2. Pier Paolo Miglietta & Domenico Morrone & Federica De Leo, 2018. "The Water Footprint Assessment of Electricity Production: An Overview of the Economic-Water-Energy Nexus in Italy," Sustainability, MDPI, Open Access Journal, vol. 10(1), pages 1-14, January.
    3. Angela Cheptea & Catherine Laroche-Dupraz, 2019. "Is irrigation driven by the economic value of internationally traded agricultural products?," Post-Print hal-02278996, HAL.
    4. Andrea Fracasso & Martina Sartori & Stefano Schiavo, 2014. "Determinants of Virtual Water Flows in the Mediterranean," IEFE Working Papers 75, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    5. Angela Cheptea & Catherine Laroche-Dupraz, 2018. "The water productivity of internationally traded agricultural products," Post-Print hal-01964295, HAL.
    6. Andrea Fracasso & Massimo Riccaboni & Martina Sartori & Stefano Schiavo, 2017. "Modeling the future evolution of the virtual water trade network," Sciences Po publications info:hdl:2441/4krkv5tkmp8, Sciences Po.
    7. Sartori, Martina & Schiavo, Stefano, 2015. "Connected we stand: A network perspective on trade and global food security," Food Policy, Elsevier, vol. 57(C), pages 114-127.
    8. Soheila Zareie & Omid Bozorg-Haddad & Hugo A. Loáiciga, 2021. "A state-of-the-art review of water diplomacy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2337-2357, February.
    9. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    10. Ankai Xu, 2018. "Trade in Virtual Water: Do Property Rights Matter?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2585-2609, June.
    11. Mohamad Afkhami & Thomas Bassetti & Hamed Ghoddusi & Filippo Pavesi, 2018. "Virtual Water Trade: The Implications of Capital Scarcity," Working Papers 03/2018, University of Verona, Department of Economics.
    12. Giovanni Pino & Pierluigi Toma & Cristian Rizzo & Pier Paolo Miglietta & Alessandro M. Peluso & Gianluigi Guido, 2017. "Determinants of Farmers’ Intention to Adopt Water Saving Measures: Evidence from Italy," Sustainability, MDPI, Open Access Journal, vol. 9(1), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fracasso, Andrea & Sartori, Martina & Schiavo, Stefano, 2014. "Determinants of virtual water flows in the Mediterranean," MPRA Paper 60500, University Library of Munich, Germany.
    2. Fracasso, Andrea, 2014. "A gravity model of virtual water trade," Ecological Economics, Elsevier, vol. 108(C), pages 215-228.
    3. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    4. Delbourg, Esther & Dinar, Shlomi, 2020. "The globalization of virtual water flows: Explaining trade patterns of a scarce resource," World Development, Elsevier, vol. 131(C).
    5. Mohamad Afkhami & Thomas Bassetti & Hamed Ghoddusi & Filippo Pavesi, 2018. "Virtual Water Trade: The Implications of Capital Scarcity," Working Papers 03/2018, University of Verona, Department of Economics.
    6. Chen, Rui & Wilson, Norbert L.W., 2017. "Virtual Water Trade: Do Bilateral Tariffs Matter?," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258279, Agricultural and Applied Economics Association.
    7. Ankai Xu, 2018. "Trade in Virtual Water: Do Property Rights Matter?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2585-2609, June.
    8. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    9. Gawel, Erik & Bernsen, Kristina, 2011. "What is wrong with virtual water trading?," UFZ Discussion Papers 1/2011, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    10. Dennis Wichelns, 2010. "Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2203-2219, August.
    11. Martina Sartori & Stefano Schiavo, 2014. "Virtual Water Trade and Country Vulnerability: A network perspective," IEFE Working Papers 73, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    12. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Dik Roth & Jeroen Warner, 2008. "Virtual water: Virtuous impact? The unsteady state of virtual water," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 25(2), pages 257-270, June.
    14. Song, Jianfeng & Yin, Yali & Xu, Hang & Wang, Yubao & Wu, Pute & Sun, Shikun, 2020. "Drivers of domestic grain virtual water flow: A study for China," Agricultural Water Management, Elsevier, vol. 239(C).
    15. Angela Cheptea & Catherine Laroche-Dupraz, 2019. "Is irrigation driven by the economic value of internationally traded agricultural products?," Post-Print hal-02278996, HAL.
    16. Yang, Hong & Wang, Lei & Zehnder, Alexander J.B., 2007. "Water scarcity and food trade in the Southern and Eastern Mediterranean countries," Food Policy, Elsevier, vol. 32(5-6), pages 585-605.
    17. Ansink, Erik, 2010. "Refuting two claims about virtual water trade," Ecological Economics, Elsevier, vol. 69(10), pages 2027-2032, August.
    18. Xinghua Fan & Xuxia Li & Jiuli Yin & Jiaochen Liang, 2019. "Temporal Characteristics and Spatial Homogeneity of Virtual Water Trade: A Complex Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1467-1480, March.
    19. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2019. "Long Term Drivers of Global Virtual Water Trade: A Trade Gravity Approach for 1965–2010," Ecological Economics, Elsevier, vol. 156(C), pages 318-326.
    20. Novo, P. & Garrido, A. & Varela-Ortega, C., 2009. "Are virtual water "flows" in Spanish grain trade consistent with relative water scarcity?," Ecological Economics, Elsevier, vol. 68(5), pages 1454-1464, March.

    More about this item

    Keywords

    virtual water; water footprint; green and blue water; water scarcity and security; water policy; international trade.;
    All these keywords.

    JEL classification:

    • F18 - International Economics - - Trade - - - Trade and Environment
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcu:iefewp:iefewp74. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Elena Dal Zotto) The email address of this maintainer does not seem to be valid anymore. Please ask Elena Dal Zotto to update the entry or send us the correct email address. General contact details of provider: https://edirc.repec.org/data/eabocit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.