IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i10p2203-2219.html
   My bibliography  Save this article

Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion

Author

Listed:
  • Dennis Wichelns

Abstract

The topic of virtual water has received substantial attention in recent years, both in scholarly literature and the popular press. Many authors have described the “flow of virtual water” between countries that engage in the trade of agricultural crops and livestock products. Some have suggested that water-short countries should import water-intensive agricultural products from water-abundant countries, while using their limited domestic water resources for higher valued activities. While compelling at first, such a policy prescription can be misleading. Virtual water is a helpful phrase for describing the water required to produce agricultural products and other goods. Discussions of virtual water have been effective in encouraging public officials and citizens to focus on water scarcity issues. Yet the phrase is not based on an underlying conceptual framework. Hence, the virtual water perspective cannot be used alone as a criterion for selecting optimal policies. Trading strategies based on the virtual water perspective are not consistent with the economic concept of comparative advantage. In a similar fashion, distinguishing between the “blue water” and “green water” components of virtual water is helpful in a descriptive sense, but these phrases are not based on an underlying conceptual framework that can serve as a policy criterion for selecting among alternative policy options. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Dennis Wichelns, 2010. "Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2203-2219, August.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:10:p:2203-2219
    DOI: 10.1007/s11269-009-9547-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-009-9547-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-009-9547-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Md. Islam & Taikan Oki & Shinjiro Kanae & Naota Hanasaki & Yasushi Agata & Kei Yoshimura, 2007. "A grid-based assessment of global water scarcity including virtual water trading," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 19-33, January.
    2. Wichelns, Dennis, 2004. "The policy relevance of virtual water can be enhanced by considering comparative advantages," Agricultural Water Management, Elsevier, vol. 66(1), pages 49-63, April.
    3. Guan, Dabo & Hubacek, Klaus, 2007. "Assessment of regional trade and virtual water flows in China," Ecological Economics, Elsevier, vol. 61(1), pages 159-170, February.
    4. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    5. M. Kumar & O. Singh, 2005. "Virtual Water in Global Food and Water Policy Making: Is There a Need for Rethinking?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 759-789, December.
    6. S. Brown & H. Schreier & L. Lavkulich, 2009. "Incorporating Virtual Water into Water Management: A British Columbia Example," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2681-2696, October.
    7. Novo, P. & Garrido, A. & Varela-Ortega, C., 2009. "Are virtual water "flows" in Spanish grain trade consistent with relative water scarcity?," Ecological Economics, Elsevier, vol. 68(5), pages 1454-1464, March.
    8. Chapagain, A.K. & Hoekstra, A.Y. & Savenije, H.H.G. & Gautam, R., 2006. "The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries," Ecological Economics, Elsevier, vol. 60(1), pages 186-203, November.
    9. Yang, Hong & Zehnder, Alexander J. B., 2002. "Water Scarcity and Food Import: A Case Study for Southern Mediterranean Countries," World Development, Elsevier, vol. 30(8), pages 1413-1430, August.
    10. Mounir Belloumi & Mohamed Salah Matoussi, 2008. "Water Scarcity Management in the MENA Region from a Globalization Perspective," Development, Palgrave Macmillan;Society for International Deveopment, vol. 51(1), pages 135-138, March.
    11. Wichelns, Dennis, 2001. "The role of `virtual water' in efforts to achieve food security and other national goals, with an example from Egypt," Agricultural Water Management, Elsevier, vol. 49(2), pages 131-151, July.
    12. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    2. Song, Jianfeng & Yin, Yali & Xu, Hang & Wang, Yubao & Wu, Pute & Sun, Shikun, 2020. "Drivers of domestic grain virtual water flow: A study for China," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Julian Fulton & Heather Cooley & Peter Gleick, 2014. "Water Footprint Outcomes and Policy Relevance Change with Scale Considered: Evidence from California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3637-3649, September.
    4. Taleb Abu-Sharar & Emad Al-Karablieh & Munther Haddadin, 2012. "Role of Virtual Water in Optimizing Water Resources Management in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3977-3993, November.
    5. Jeroen Vos & Rutgerd Boelens, 2014. "Sustainability Standards and the Water Question," Development and Change, International Institute of Social Studies, vol. 45(2), pages 205-230, March.
    6. Michael Gilmont, 2015. "Water resource decoupling in the MENA through food trade as a mechanism for circumventing national water scarcity," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(6), pages 1113-1131, December.
    7. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    9. Fu, YiCheng & Zhao, Jinyong & Wang, Chengli & Peng, Wenqi & Wang, Qi & Zhang, Chunling, 2018. "The virtual Water flow of crops between intraregional and interregional in mainland China," Agricultural Water Management, Elsevier, vol. 208(C), pages 204-213.
    10. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    11. A. Hassan & M. Y. Saari & T. H. Tengku Ismail, 2017. "Virtual water trade in industrial products: evidence from Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 877-894, June.
    12. Davy Vanham & Stefanie Millinger & Harald Pliessnig & Wolfgang Rauch, 2011. "Rasterised Water Demands: Methodology for Their Assessment and Possible Applications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3301-3320, October.
    13. Mohamad Afkhami & Thomas Bassetti & Hamed Ghoddusi & Filippo Pavesi, 2018. "Virtual Water Trade: The Implications of Capital Scarcity," Working Papers 03/2018, University of Verona, Department of Economics.
    14. Xinghua Fan & Xuxia Li & Jiuli Yin & Jiaochen Liang, 2019. "Temporal Characteristics and Spatial Homogeneity of Virtual Water Trade: A Complex Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1467-1480, March.
    15. Yuanhong Tian & Matthias Ruth & Dajian Zhu, 2017. "Using the IPAT identity and decoupling analysis to estimate water footprint variations for five major food crops in China from 1978 to 2010," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2355-2375, December.
    16. Genia Nagara & Wei-Haur Lam & Nasha Lee & Faridah Othman & Md Shaaban, 2015. "Comparative SWOT Analysis for Water Solutions in Asia and Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 125-138, January.
    17. Mateos, Luciano & Araus, José L., 2016. "Hydrological, engineering, agronomical, breeding and physiological pathways for the effective and efficient use of water in agriculture," Agricultural Water Management, Elsevier, vol. 164(P1), pages 190-196.
    18. Delbourg, Esther & Dinar, Shlomi, 2020. "The globalization of virtual water flows: Explaining trade patterns of a scarce resource," World Development, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    2. Esther Velázquez & Cristina Madrid & María Beltrán, 2011. "Rethinking the Concepts of Virtual Water and Water Footprint in Relation to the Production–Consumption Binomial and the Water–Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 743-761, January.
    3. Alaa El-Sadek, 2010. "Virtual Water Trade as a Solution for Water Scarcity in Egypt," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2437-2448, September.
    4. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    5. Ansink, Erik, 2010. "Refuting two claims about virtual water trade," Ecological Economics, Elsevier, vol. 69(10), pages 2027-2032, August.
    6. Novo, P. & Garrido, A. & Varela-Ortega, C., 2009. "Are virtual water "flows" in Spanish grain trade consistent with relative water scarcity?," Ecological Economics, Elsevier, vol. 68(5), pages 1454-1464, March.
    7. Hoekstra, Arjen, 2010. "The relation between international trade and freshwater scarcity," WTO Staff Working Papers ERSD-2010-05, World Trade Organization (WTO), Economic Research and Statistics Division.
    8. Xiaoling Su & Jianfang Li & Vijay Singh, 2014. "Optimal Allocation of Agricultural Water Resources Based on Virtual Water Subdivision in Shiyang River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2243-2257, June.
    9. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    10. Delbourg, Esther & Dinar, Shlomi, 2020. "The globalization of virtual water flows: Explaining trade patterns of a scarce resource," World Development, Elsevier, vol. 131(C).
    11. Hoekstra, Arjen Y. & Chapagain, Ashok K., 2007. "The water footprints of Morocco and the Netherlands: Global water use as a result of domestic consumption of agricultural commodities," Ecological Economics, Elsevier, vol. 64(1), pages 143-151, October.
    12. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, Open Access Journal, vol. 12(3), pages 1-16, January.
    13. Mubako, Stanley & Lahiri, Sajal & Lant, Christopher, 2013. "Input–output analysis of virtual water transfers: Case study of California and Illinois," Ecological Economics, Elsevier, vol. 93(C), pages 230-238.
    14. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    15. Yang, Hong & Wang, Lei & Zehnder, Alexander J.B., 2007. "Water scarcity and food trade in the Southern and Eastern Mediterranean countries," Food Policy, Elsevier, vol. 32(5-6), pages 585-605.
    16. Neumann, Kathleen & Stehfest, Elke & Verburg, Peter H. & Siebert, Stefan & Müller, Christoph & Veldkamp, Tom, 2011. "Exploring global irrigation patterns: A multilevel modelling approach," Agricultural Systems, Elsevier, vol. 104(9), pages 703-713.
    17. Hoekstra, A.Y., 2009. "Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis," Ecological Economics, Elsevier, vol. 68(7), pages 1963-1974, May.
    18. Fracasso, Andrea, 2014. "A gravity model of virtual water trade," Ecological Economics, Elsevier, vol. 108(C), pages 215-228.
    19. Oluwafisayo Alabi & Max Mundy & Kim Swales & Karen Turner, 2016. "Physical water use and water sector activity in environmental input-output analysis," Working Papers 1612, University of Strathclyde Business School, Department of Economics.
    20. Dong Yan & Zhiwei Jia & Jie Xue & Huaiwei Sun & Dongwei Gui & Yi Liu & Xiaofan Zeng, 2018. "Inter-Regional Coordination to Improve Equality in the Agricultural Virtual Water Trade," Sustainability, MDPI, Open Access Journal, vol. 10(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:10:p:2203-2219. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.