IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3234-d1066319.html
   My bibliography  Save this article

Structural Characteristics and Evolutionary Drivers of Global Virtual Water Trade Networks: A Stochastic Actor-Oriented Model for 2000–2015

Author

Listed:
  • Lizhi Xing

    (College of Economic and Management, Beijing University of Technology, Beijing 100124, China
    International Business School, Beijing Foreign Studies University, Beijing 100089, China)

  • Wen Chen

    (College of Economic and Management, Beijing University of Technology, Beijing 100124, China)

Abstract

The globalization of trade has caused tremendous pressure on water resources globally, and a virtual water trade provides a new perspective on global freshwater sharing and water sustainability. No study has yet explored the structural characteristics and drivers of the evolution of global virtual water trade networks from a network structure evolution perspective. This paper aims to fill this critical gap by developing a research framework to explore how endogenous network structures and external factors have influenced the evolution of virtual water trade networks. We constructed virtual water trade networks for 62 countries worldwide from 2000 to 2015 and used an innovative combination of multi-regional input–output data and stochastic actor-oriented models for analytical purposes. Our results support the theoretical hypothesis of ecologically unequal exchange and trade drivers, arguing that virtual water flows from less developed countries to developed countries under global free trade and that unequal trade patterns lead to excessive consumption of virtual water in less developed countries. The results partially support the theoretical content of water endowment and traditional gravity models, finding that trade networks are expanding to farther and larger markets, confirming that national water scarcity levels do not impact the evolution of virtual water trade networks. Finally, we point out that meritocratic links, path dependence, reciprocity, and transmissive links have extreme explanatory power for the evolutionary development of virtual water networks.

Suggested Citation

  • Lizhi Xing & Wen Chen, 2023. "Structural Characteristics and Evolutionary Drivers of Global Virtual Water Trade Networks: A Stochastic Actor-Oriented Model for 2000–2015," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3234-:d:1066319
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davide Rigo, 2021. "Global value chains and technology transfer: new evidence from developing countries," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 157(2), pages 271-294, May.
    2. Rahel Aichele & Gabriel Felbermayr, 2015. "Kyoto and Carbon Leakage: An Empirical Analysis of the Carbon Content of Bilateral Trade," The Review of Economics and Statistics, MIT Press, vol. 97(1), pages 104-115, March.
    3. Lenzen, Manfred & Bhaduri, Anik & Moran, Daniel & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2012. "The role of scarcity in global virtual water flows," Discussion Papers 133478, University of Bonn, Center for Development Research (ZEF).
    4. Gang Wu & Lianyue Feng & Mihaela Peres & Jiali Dan, 2020. "Do self-organization and relational embeddedness influence free trade agreements network formation? Evidence from an exponential random graph model," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 29(8), pages 995-1017, November.
    5. Yang, Hong & Wang, Lei & Zehnder, Alexander J.B., 2007. "Water scarcity and food trade in the Southern and Eastern Mediterranean countries," Food Policy, Elsevier, vol. 32(5-6), pages 585-605.
    6. de Fraiture, Charlotte & Cai, X & Amarasinghe, Upali & Rosegrant, M. & Molden, David, 2004. "Does international cereal trade save water?: the impact of virtual water trade on global water use," IWMI Research Reports H035342, International Water Management Institute.
    7. Jeffrey A. Frankel & Andrew K. Rose, 2005. "Is Trade Good or Bad for the Environment? Sorting Out the Causality," The Review of Economics and Statistics, MIT Press, vol. 87(1), pages 85-91, February.
    8. Ansink, Erik, 2010. "Refuting two claims about virtual water trade," Ecological Economics, Elsevier, vol. 69(10), pages 2027-2032, August.
    9. Hornborg, Alf, 1998. "Towards an ecological theory of unequal exchange: articulating world system theory and ecological economics," Ecological Economics, Elsevier, vol. 25(1), pages 127-136, April.
    10. Meng, Bo & Peters, Glen P. & Wang, Zhi & Li, Meng, 2018. "Tracing CO2 emissions in global value chains," Energy Economics, Elsevier, vol. 73(C), pages 24-42.
    11. Erwin Bulte & Edward Barbier, 2005. "Trade and Renewable Resources in a Second Best World: An Overview," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 30(4), pages 423-463, April.
    12. Yin, Mei & Zhu, Lingjiong, 2016. "Reciprocity in directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 71-84.
    13. Bergstrand, Jeffrey H, 1985. "The Gravity Equation in International Trade: Some Microeconomic Foundations and Empirical Evidence," The Review of Economics and Statistics, MIT Press, vol. 67(3), pages 474-481, August.
    14. M. Kumar & O. Singh, 2005. "Virtual Water in Global Food and Water Policy Making: Is There a Need for Rethinking?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 759-789, December.
    15. Susana Ferreira, 2007. "Trade Policy and Natural Resource Use: The Case for a Quantitative Restriction," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(2), pages 361-376, June.
    16. de Fraiture, Charlotte & Cai, Ximing & Amarasinghe, Upali A. & Rosegrant, Mark W. & Molden, David J., 2004. "Does international cereal trade save water? The impact of virtual water trade on global water use," IWMI Research Reports 92832, International Water Management Institute.
    17. Akoto-Danso, Edmund Kyei & Karg, Hanna & Drechsel, Pay & Nyarko, George & Buerkert, Andreas, 2019. "Virtual water flow in food trade systems of two West African cities," Agricultural Water Management, Elsevier, vol. 213(C), pages 760-772.
    18. Zhengqi Pan, 2018. "Varieties Of Intergovernmental Organization Memberships And Structural Effects In The World Trade Network," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-30, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fracasso, Andrea, 2014. "A gravity model of virtual water trade," Ecological Economics, Elsevier, vol. 108(C), pages 215-228.
    2. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2019. "Long Term Drivers of Global Virtual Water Trade: A Trade Gravity Approach for 1965–2010," Ecological Economics, Elsevier, vol. 156(C), pages 318-326.
    3. Alina Petronela Alexoaei & Valentin Cojanu & Cristiana-Ioana Coman, 2021. "On Sustainable Consumption: The Implications of Trade in Virtual Water for the EU’s Food Security," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    4. Fracasso, Andrea & Sartori, Martina & Schiavo, Stefano, 2014. "Determinants of virtual water flows in the Mediterranean," MPRA Paper 60500, University Library of Munich, Germany.
    5. Gawel, Erik & Bernsen, Kristina, 2011. "What is wrong with virtual water trading?," UFZ Discussion Papers 1/2011, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    6. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    7. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Anastasia B. Likhacheva & Igor A. Makarov, 2014. "The Virtual Water Of Siberia And The Russian Far East For The Asia-Pacific Region: Global Gains Vs Regional Sustainability," HSE Working papers WP BRP 10/IR/2014, National Research University Higher School of Economics.
    9. Kazuki Kagohashi & Tetsuya Tsurumi & Shunsuke Managi, 2015. "The Effects of International Trade on Water Use," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    10. Maria Berrittella & Katrin Rehdanz & Richard S.J. Tol, 2006. "The Economic Impact of the South-North Water Transfer Project in China: A Computable General Equilibrium Analysis," Working Papers 2006.154, Fondazione Eni Enrico Mattei.
    11. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    12. Dennis Wichelns, 2010. "Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2203-2219, August.
    13. de Fraiture, Charlotte & Wichelns, D. & Rockstrom, J. & Kemp-Benedict, E. & Eriyagama, Nishadi & Gordon, L. J. & Hanjra, M. A. & Hoogeveen, J. & Huber-Lee, A. & Karlberg, L., 2007. "Looking ahead to 2050: scenarios of alternative investment approaches," Book Chapters,, International Water Management Institute.
    14. repec:spo:wpecon:info:hdl:2441/5l6uh8ogmqildh09h2qa1ccc1 is not listed on IDEAS
    15. Erik Gawel & Kristina Bernsen, 2013. "What is Wrong with Virtual Water Trading? On the Limitations of the Virtual Water Concept," Environment and Planning C, , vol. 31(1), pages 168-181, February.
    16. Ohrel, Sara Bushey & Choi, Suk-Won & Sohngen, Brent, 2011. "Extending the GTAP Family of Models: A Partial Equilibrium Approach to Measuring the Costs of Carbon Sequestration and Avoided Deforestation," Conference papers 332046, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Hoekstra, Arjen, 2010. "The relation between international trade and freshwater scarcity," WTO Staff Working Papers ERSD-2010-05, World Trade Organization (WTO), Economic Research and Statistics Division.
    18. Ansink, Erik, 2010. "Refuting two claims about virtual water trade," Ecological Economics, Elsevier, vol. 69(10), pages 2027-2032, August.
    19. Perry, Chris, 2014. "Water footprints: Path to enlightenment, or false trail?," Agricultural Water Management, Elsevier, vol. 134(C), pages 119-125.
    20. Candau, Fabien & Regnacq, Charles & Schlick, Julie, 2022. "Climate change, comparative advantage and the water capability to produce agricultural goods," World Development, Elsevier, vol. 158(C).
    21. Amarasinghe, Upali & Shah, Tushaar & Turral, Hugh & Anand, B. K., 2007. "India’s water future to 2025-2050: Business-as-usual scenario and deviations," IWMI Research Reports H040852, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3234-:d:1066319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.