IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v210y2018icp550-567.html
   My bibliography  Save this article

The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis

Author

Listed:
  • White, David J.
  • Hubacek, Klaus
  • Feng, Kuishuang
  • Sun, Laixiang
  • Meng, Bo

Abstract

Population and economic growth pose unique challenges in securing sufficient water, energy, and food to meet demand at the sub-national (regional), national, and supra-national level. An increasing share of this demand is met through trade and imports. The unprecedented rapid growth, extent, and complexity of global value chains (GVCs) since the 1980s have reshaped global trade. The GVCs – and new economic patterns of regionalization – affect the demands on water, energy, and food within countries and across global supply chains. East Asia is of particular interest due to the region’s rapid economic growth, substantial population size, high interdependence of the region’s economies, and varying degree of resource availability. While greater interdependence across the region has increased the efficiency of production and trade, these activities require the input of water-energy-food and generate disturbances in the environment. The transnational inter-regional input-output approach is utilized in a tele-connected Water-Energy-Food Nexus (WEFN) analysis of the East Asia GVC to assess competing demands for these resources and environmental outcomes.

Suggested Citation

  • White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
  • Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:550-567
    DOI: 10.1016/j.apenergy.2017.05.159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917306840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian Biba, 2016. "The goals and reality of the water–food–energy security nexus: the case of China and its southern neighbours," Third World Quarterly, Taylor & Francis Journals, vol. 37(1), pages 51-70, January.
    2. Yuan Chang & Guijun Li & Yuan Yao & Lixiao Zhang & Chang Yu, 2016. "Quantifying the Water-Energy-Food Nexus: Current Status and Trends," Energies, MDPI, vol. 9(2), pages 1-17, January.
    3. Vanham, D., 2016. "Does the water footprint concept provide relevant information to address the water–food–energy–ecosystem nexus?," Ecosystem Services, Elsevier, vol. 17(C), pages 298-307.
    4. Abdelradi, Fadi & Serra, Teresa, 2015. "Food–energy nexus in Europe: Price volatility approach," Energy Economics, Elsevier, vol. 48(C), pages 157-167.
    5. Rae Zimmerman & Quanyan Zhu & Carolyn Dimitri, 2016. "Promoting resilience for food, energy, and water interdependencies," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 50-61, March.
    6. Scott, Christopher A. & Pierce, Suzanne A. & Pasqualetti, Martin J. & Jones, Alice L. & Montz, Burrell E. & Hoover, Joseph H., 2011. "Policy and institutional dimensions of the water-energy nexus," Energy Policy, Elsevier, vol. 39(10), pages 6622-6630, October.
    7. Unknown, 2016. "Water Energy and Food Security Nexus," Conference Proceedings 253272, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    8. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    9. Leonie Wenz & Sven Norman Willner & Alexander Radebach & Robert Bierkandt & Jan Christoph Steckel & Anders Levermann, 2015. "Regional And Sectoral Disaggregation Of Multi-Regional Input-Output Tables - A Flexible Algorithm," Economic Systems Research, Taylor & Francis Journals, vol. 27(2), pages 194-212, June.
    10. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    11. Siddiqi, Afreen & Anadon, Laura Diaz, 2011. "The water-energy nexus in Middle East and North Africa," Energy Policy, Elsevier, vol. 39(8), pages 4529-4540, August.
    12. Cho, Cheol-Joo, 2013. "An exploration of reliable methods of estimating emergy requirements at the regional scale: Traditional emergy analysis, regional thermodynamic input–output analysis, or the conservation rule-implicit," Ecological Modelling, Elsevier, vol. 251(C), pages 288-296.
    13. Peter L. Daniels & Manfred Lenzen & Steven J. Kenway, 2011. "The Ins And Outs Of Water Use -- A Review Of Multi-Region Input--Output Analysis And Water Footprints For Regional Sustainability Analysis And Policy," Economic Systems Research, Taylor & Francis Journals, vol. 23(4), pages 353-370, October.
    14. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    15. Ringler, C. & Willenbockel, D. & Perez, N. & Rosegrant, M. & Zhu, T. & Matthews, Nathanial, "undated". "Global linkages among energy, food and water: an economic assessment," Papers published in Journals (Open Access) H047781, International Water Management Institute.
    16. Li, Xin & Feng, Kuishuang & Siu, Yim Ling & Hubacek, Klaus, 2012. "Energy-water nexus of wind power in China: The balancing act between CO2 emissions and water consumption," Energy Policy, Elsevier, vol. 45(C), pages 440-448.
    17. Valeria De Laurentiis & Dexter V.L. Hunt & Christopher D.F. Rogers, 2016. "Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach," Sustainability, MDPI, vol. 8(1), pages 1-23, January.
    18. Marta Antonelli & Stefania Tamea, 2015. "Food-water security and virtual water trade in the Middle East and North Africa," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(3), pages 326-342, September.
    19. Kuroiwa, Ikuo & Ozeki, Hiromichi, 2010. "Intra-regional trade between China, Japan, and Korea : before and after the financial crisis," IDE Discussion Papers 237, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    20. Gerbens-Leenes, P.W. & Hoekstra, A.Y. & van der Meer, Th., 2009. "The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply," Ecological Economics, Elsevier, vol. 68(4), pages 1052-1060, February.
    21. Gary Gereffi, 2014. "Global value chains in a post-Washington Consensus world," Review of International Political Economy, Taylor & Francis Journals, vol. 21(1), pages 9-37, February.
    22. Wichelns, Dennis, 2017. "The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective?," Environmental Science & Policy, Elsevier, vol. 69(C), pages 113-123.
    23. Okadera, Tomohiro & Watanabe, Masataka & Xu, Kaiqin, 2006. "Analysis of water demand and water pollutant discharge using a regional input-output table: An application to the City of Chongqing, upstream of the Three Gorges Dam in China," Ecological Economics, Elsevier, vol. 58(2), pages 221-237, June.
    24. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
    25. Manfred Lenzen & Richard Wood & Thomas Wiedmann, 2010. "Uncertainty Analysis For Multi-Region Input-Output Models - A Case Study Of The Uk'S Carbon Footprint," Economic Systems Research, Taylor & Francis Journals, vol. 22(1), pages 43-63.
    26. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2015. "Exploring the water-energy nexus in Brazil: The electricity use for water supply," Energy, Elsevier, vol. 85(C), pages 415-432.
    27. Du, Huibin & Guo, Jianghong & Mao, Guozhu & Smith, Alexander M. & Wang, Xuxu & Wang, Yuan, 2011. "CO2 emissions embodied in China-US trade: Input-output analysis based on the emergy/dollar ratio," Energy Policy, Elsevier, vol. 39(10), pages 5980-5987, October.
    28. Chris Bachmann & Matthew J. Roorda & Chris Kennedy, 2015. "Developing A Multi-Scale Multi-Region Input-Output Model," Economic Systems Research, Taylor & Francis Journals, vol. 27(2), pages 172-193, June.
    29. Arnold Tukker & Erik Dietzenbacher, 2013. "Global Multiregional Input-Output Frameworks: An Introduction And Outlook," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 1-19, March.
    30. Claudia Ringler & Dirk Willenbockel & Nicostrato Perez & Mark Rosegrant & Tingju Zhu & Nathanial Matthews, 2016. "Global linkages among energy, food and water: an economic assessment," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 161-171, March.
    31. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    32. Alisher Mirzabaev & Dawit Guta & Jann Goedecke & Varun Gaur & Jan Börner & Detlef Virchow & Manfred Denich & Joachim von Braun, 2015. "Bioenergy, food security and poverty reduction: trade-offs and synergies along the water-energy-food security nexus," Water International, Taylor & Francis Journals, vol. 40(5-6), pages 772-790, September.
    33. Manfred Lenzen, 2011. "Aggregation Versus Disaggregation In Input-Output Analysis Of The Environment," Economic Systems Research, Taylor & Francis Journals, vol. 23(1), pages 73-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Font Vivanco & Ranran Wang & Edgar Hertwich, 2018. "Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1473-1486, December.
    2. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    3. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    4. Gengyuan Liu & Asim Nawab & Fanxin Meng & Aamir Mehmood Shah & Xiaoya Deng & Yan Hao & Biagio F. Giannetti & Feni Agostinho & Cecília M. V. B. Almeida & Marco Casazza, 2021. "Understanding the Sustainability of the Energy–Water–Land Flow Nexus in Transnational Trade of the Belt and Road Countries," Energies, MDPI, vol. 14(19), pages 1-19, October.
    5. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    6. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    7. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    8. Jin, Yi & Tang, Xu & Feng, Cuiyang & Höök, Mikael, 2017. "Energy and water conservation synergy in China: 2007–2012," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 206-215.
    9. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    10. Adenike K. Opejin & Rimjhim M. Aggarwal & Dave D. White & J. Leah Jones & Ross Maciejewski & Giuseppe Mascaro & Hessam S. Sarjoughian, 2020. "A Bibliometric Analysis of Food-Energy-Water Nexus Literature," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    11. Eisenmenger, Nina & Wiedenhofer, Dominik & Schaffartzik, Anke & Giljum, Stefan & Bruckner, Martin & Schandl, Heinz & Wiedmann, Thomas O. & Lenzen, Manfred & Tukker, Arnold & Koning, Arjan, 2016. "Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results," Ecological Economics, Elsevier, vol. 128(C), pages 177-186.
    12. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    13. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    14. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    15. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    16. Balster, Andreas & Friedrich, Hanno, 2019. "Dynamic freight flow modelling for risk evaluation in food supply," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 4-22.
    17. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    18. Hongfang Li & Huixiao Wang & Yaxue Yang & Ruxin Zhao, 2021. "Regional Coordination and Security of Water–Energy–Food Symbiosis in Northeastern China," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    19. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    20. Cholho Song & Sea Jin Kim & Jooyeon Moon & Soo Jeong Lee & Wona Lee & Nahui Kim & Sonam Wangyel Wang & Woo-Kyun Lee, 2017. "Classification of Global Land Development Phases by Forest and GDP Changes for Appropriate Land Management in the Mid-Latitude," Sustainability, MDPI, vol. 9(8), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:210:y:2018:i:c:p:550-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.