IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v102y2009i1-3p33-40.html
   My bibliography  Save this article

Livestock water productivity in mixed crop-livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement

Author

Listed:
  • Haileslassie, Amare
  • Peden, Don
  • Gebreselassie, Solomon
  • Amede, Tilahun
  • Descheemaeker, Katrien

Abstract

Water scarcity is a major factor limiting food production. Improving Livestock Water Productivity (LWP) is one of the approaches to address those problems. LWP is defined as the ratio of livestock's beneficial outputs and services to water depleted in their production. Increasing LWP can help achieve more production per unit of water depleted. In this study we assess the spatial variability of LWP in three farming systems (rice-based, millet-based and barley-based) of the Gumera watershed in the highlands of the Blue Nile basin, Ethiopia. We collected data on land use, livestock management and climatic variables using focused group discussions, field observation and secondary data. We estimated the water depleted by evapotranspiration (ET) and beneficial animal products and services and then calculated LWP. Our results suggest that LWP is comparable with crop water productivity at watershed scales. Variability of LWP across farming systems of the Gumera watershed was apparent and this can be explained by farmers' livelihood strategies and prevailing biophysical conditions. In view of the results there are opportunities to improve LWP: improved feed sourcing, enhancing livestock productivity and multiple livestock use strategies can help make animal production more water productive. Attempts to improve agricultural water productivity, at system scale, must recognize differences among systems and optimize resources use by system components.

Suggested Citation

  • Haileslassie, Amare & Peden, Don & Gebreselassie, Solomon & Amede, Tilahun & Descheemaeker, Katrien, 2009. "Livestock water productivity in mixed crop-livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement," Agricultural Systems, Elsevier, vol. 102(1-3), pages 33-40, October.
  • Handle: RePEc:eee:agisys:v:102:y:2009:i:1-3:p:33-40
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(09)00072-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Cai, X. & Rosegrant, M. W., 2003. "World water productivity: current situation and future options," Book Chapters,, International Water Management Institute.
    3. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.
    4. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    5. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    6. Cai, X. & Rosegrant, M. W., 2003. "World water productivity: current situation and future options," IWMI Books, Reports H032641, International Water Management Institute.
    7. World Bank, 2006. "World Development Indicators 2006," World Bank Publications - Books, The World Bank Group, number 8151, December.
    8. Peden, D. & Tadesse, G. & Misra, A.K . & Ahmed, F. A. & Astatke, A. & Ayalneh, W. & Herrero, M. & Kiwuwa, G. & Kumsa, T. & Mati, B. & Mpairwe, D. & Wassenaar, T. & Yimegnuhal, A., 2007. "Water and livestock for human development," IWMI Books, Reports H040205, International Water Management Institute.
    9. Renault, D. & Wallender, W. W., 2000. "Nutritional water productivity and diets," Agricultural Water Management, Elsevier, vol. 45(3), pages 275-296, August.
    10. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Russian," IWMI Books, Reports H041260, International Water Management Institute.
    11. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    12. Haileslassie, Amare & Priess, Joerg A. & Veldkamp, Edzo & Lesschen, Jan Peter, 2007. "Nutrient flows and balances at the field and farm scale: Exploring effects of land-use strategies and access to resources," Agricultural Systems, Elsevier, vol. 94(2), pages 459-470, May.
    13. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    14. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Homann-Kee Tui, Sabine & Valbuena, Diego & Masikati, Patricia & Descheemaeker, Katrien & Nyamangara, Justice & Claessens, Lieven & Erenstein, Olaf & van Rooyen, Andre & Nkomboni, Daniel, 2015. "Economic trade-offs of biomass use in crop-livestock systems: Exploring more sustainable options in semi-arid Zimbabwe," Agricultural Systems, Elsevier, vol. 134(C), pages 48-60.
    2. Krauß, Michael & Kraatz, Simone & Drastig, Katrin & Prochnow, Annette, 2015. "The influence of dairy management strategies on water productivity of milk production," Agricultural Water Management, Elsevier, vol. 147(C), pages 175-186.
    3. Descheemaeker, Katrien & Amede, Tilahun & Haileslassie, Amare, 2010. "Improving water productivity in mixed crop-livestock farming systems of sub-Saharan Africa," Agricultural Water Management, Elsevier, vol. 97(5), pages 579-586, May.
    4. Moges B. Wagena & Andrew Sommerlot & Anteneh Z. Abiy & Amy S. Collick & Simon Langan & Daniel R. Fuka & Zachary M. Easton, 2016. "Climate change in the Blue Nile Basin Ethiopia: implications for water resources and sediment transport," Climatic Change, Springer, vol. 139(2), pages 229-243, November.
    5. Erkossa, T. & Haileslassie, A. & MacAlister, C., 2014. "Enhancing farming system water productivity through alternative land use and water management in vertisol areas of Ethiopian Blue Nile Basin (Abay)," Agricultural Water Management, Elsevier, vol. 132(C), pages 120-128.
    6. Husen Maru & Amare Haileslassie & Tesfaye Zeleke & Befikadu Esayas, 2021. "Analysis of Smallholders’ Livelihood Vulnerability to Drought across Agroecology and Farm Typology in the Upper Awash Sub-Basin, Ethiopia," Sustainability, MDPI, vol. 13(17), pages 1-28, August.
    7. Vladimir Mirlas & Vitaly Kulagin & Aida Ismagulova & Yaakov Anker, 2022. "MODFLOW and HYDRUS Modeling of Groundwater Supply Prospect Assessment for Distant Pastures in the Aksu River Middle Reaches," Sustainability, MDPI, vol. 14(24), pages 1-28, December.
    8. Descheemaeker, K. & Bunting, S. W. & Bindraban, P. & Muthuri, C. & Molden, D. & Beveridge, M. & van Brakel, Martin & Herrero, M. & Clement, Floriane & Boelee, Eline & Jarvis, D. I., 2013. "Increasing water productivity in Agriculture," Book Chapters,, International Water Management Institute.
    9. Rimhanen, Karoliina & Kahiluoto, Helena, 2014. "Management of harvested C in smallholder mixed farming in Ethiopia," Agricultural Systems, Elsevier, vol. 130(C), pages 13-22.
    10. U. Behera & P. Panigrahi & A. Sarangi, 2012. "Multiple Water Use Protocols in Integrated Farming System for Enhancing Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2605-2623, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    2. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    3. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
    4. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    5. Upali A. Amarasinghe & R.P. S. Malik & Bharat R. Sharma, 2010. "Overcoming growing water scarcity: Exploring potential improvements in water productivity in India," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 188-199, August.
    6. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    7. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    8. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    9. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    10. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    11. Hossain, Istiaque & Alam, Md. Mahmudul & Siwar, Chamhuri & Bin Mokhtar, Mazlin, 2019. "Measurement of Water Productivity in Seasonal Floodplain Beel Area," SocArXiv q3ayc, Center for Open Science.
    12. Scheierling, Susanne M. & Treguer, David O. & Booker, James F., 2015. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205677, Agricultural and Applied Economics Association.
    13. Cook, Simon, 2006. "Agricultural water productivity: issues, concepts and approaches," IWMI Working Papers H039744, International Water Management Institute.
    14. Oweis, Theib & Hachum, Ahmed, 2009. "Optimizing supplemental irrigation: Tradeoffs between profitability and sustainability," Agricultural Water Management, Elsevier, vol. 96(3), pages 511-516, March.
    15. Hossain, Istiaque & Siwar, Chamhuri & Bin Mokhta, Mazlin & Dey, Madan Mohan & Jaafar, Abd. Hamid & Alam, Md. Mahmudul, 2019. "Water Productivity for Boro Rice Production: Study on floodplain Beels in Rajshahi, Bangladesh," OSF Preprints tm9na, Center for Open Science.
    16. Muthuwatta, L.P. & Rientjes, T.H.M. & Bos, M.G., 2013. "Strategies to increase wheat production in the water scarce Karkheh River Basin, Iran," Agricultural Water Management, Elsevier, vol. 124(C), pages 1-10.
    17. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    18. Bossio, Deborah & Noble, Andrew D. & Aloysius, Noel & Pretty, J. & Penning de Vries, F., 2008. "Ecosystem benefits of \u2018bright\u2019 spots," IWMI Books, Reports H041603, International Water Management Institute.
    19. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, Kamineni V.G.K., 2008. "The Lower Krishna Basin Trajectory: Relationships between Basin Development and Downstream Environmental Degradation," IWMI Research Reports 44515, International Water Management Institute.
    20. Zareena Begum Irfan & Bina Gupta, 2015. "To Consume or to Conserve: Examining Water Conservation Model for Wheat Cultivation in India," Working Papers 2015-101, Madras School of Economics,Chennai,India.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:102:y:2009:i:1-3:p:33-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.