IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i9p1277-1286.html
   My bibliography  Save this article

Optimizing the rate and timing of phosphogypsum application to magnesium-affected soils for crop yield and water productivity enhancement

Author

Listed:
  • Vyshpolsky, F.
  • Mukhamedjanov, K.
  • Bekbaev, U.
  • Ibatullin, S.
  • Yuldashev, T.
  • Noble, A.D.
  • Mirzabaev, A.
  • Aw-Hassan, A.
  • Qadir, M.

Abstract

The levels of magnesium (Mg2+) in irrigation waters and soils are increasing in several irrigation schemes worldwide. Excess levels of Mg2+ in irrigation waters and/or in soils negatively affect soil physical properties (infiltration rate and hydraulic conductivity) and ultimately crop growth and yield. Although few studies have been undertaken on productivity enhancement of magnesium-affected soils by adding a source of calcium (Ca2+) to mitigate the effects of excess Mg2+, there is no information available on optimizing the rate and time of the Ca2+-amendments. A 2-year field study was undertaken in southern Kazakhstan by applying phosphogypsum (PG), a source of Ca2+ and a byproduct of the phosphorous fertilizer industry, to a magnesium-affected soil. There were five treatments with four replications: (1) control (without PG application); (2) PG application in January (before snowfall) equivalent to PG requirement for 0.3m soil depth (3.3tha-1); (3) PG application in January equivalent to PG requirement for 0.6m soil depth (8.0tha-1); (4) PG application in April (after snowmelt) at 3.3tha-1; and (5) PG application in April (after snowmelt) at 8.0tha-1. All treatment plots were grown with cotton (Gossypium hirsutum L.), which is the most important summer crop in the region. The PG treatments performed significantly better than the control in terms of (1) improved soil quality with a reduction in exchangeable magnesium percentage (EMP) levels; (2) enhanced water movement into and through the soil vis-à-vis increased moisture storage in the root zone for use by the plant roots; (3) increased irrigation efficiency; (4) increased cotton yield and water productivity; and (5) greater financial benefits. In terms of the best rate and time of application, PG applied before the snowfall improved the soil properties to a greater extent than its application in spring after snowmelt. The economic benefits from the amendment application at 3.3tha-1 were double those from the treatments where it was applied at 8.0tha-1, suggesting that the lower rate was economically optimal. In addition to improving crop productivity, the study demonstrated the beneficial use of an industrial waste material in agriculture.

Suggested Citation

  • Vyshpolsky, F. & Mukhamedjanov, K. & Bekbaev, U. & Ibatullin, S. & Yuldashev, T. & Noble, A.D. & Mirzabaev, A. & Aw-Hassan, A. & Qadir, M., 2010. "Optimizing the rate and timing of phosphogypsum application to magnesium-affected soils for crop yield and water productivity enhancement," Agricultural Water Management, Elsevier, vol. 97(9), pages 1277-1286, September.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:9:p:1277-1286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00083-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Hussain, Intizar & Sakthivadivel, R & Amarasinghe, Upali, 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," IWMI Books, Reports H041504, International Water Management Institute.
    3. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Russian," IWMI Books, Reports H041260, International Water Management Institute.
    4. Hussain, Intizar & Sakthivadivel, Ramasamy & Amarasinghe, Upali A. & Mudasser, Muhammad & Molden, David J., 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," IWMI Research Reports 52972, International Water Management Institute.
    5. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    6. Hussain, Intizar & Sakthivadivel, R. & Amarasinghe, Upali A., 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," Book Chapters,, International Water Management Institute.
    7. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    8. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    9. Hussain, I. & Sakthivadivel, R. & Amarasinghe, U. & Mudasser, M. & Molden, D., 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," IWMI Research Reports H031469, International Water Management Institute.
    10. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    11. Vyshpolsky, F. & Bekbaev, U. & Mukhamedjanov, K. & Ibatullin, S. & Paroda, R. & Yuldashev, T. & Karimov, Akmal & Aw-Hassan, A. & Noble, Andrew & Qadir, Manzoor, 2008. "Enhancing the productivity of high-magnesium soil and water resources," IWMI Reports 273359, International Water Management Institute.
    12. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qadir, M. & Sposito, G. & Smith, C.J. & Oster, J.D., 2021. "Reassessing irrigation water quality guidelines for sodicity hazard," Agricultural Water Management, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    2. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    3. Muthuwatta, L.P. & Rientjes, T.H.M. & Bos, M.G., 2013. "Strategies to increase wheat production in the water scarce Karkheh River Basin, Iran," Agricultural Water Management, Elsevier, vol. 124(C), pages 1-10.
    4. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    5. Singh, R. & van Dam, J.C. & Feddes, R.A., 2006. "Water productivity analysis of irrigated crops in Sirsa district, India," Agricultural Water Management, Elsevier, vol. 82(3), pages 253-278, April.
    6. Ines, Amor V.M. & Honda, Kiyoshi & Das Gupta, Ashim & Droogers, Peter & Clemente, Roberto S., 2006. "Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 83(3), pages 221-232, June.
    7. Vazifedoust, M. & van Dam, J.C. & Feddes, R.A. & Feizi, M., 2008. "Increasing water productivity of irrigated crops under limited water supply at field scale," Agricultural Water Management, Elsevier, vol. 95(2), pages 89-102, February.
    8. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    9. Haileslassie, Amare & Peden, Don & Gebreselassie, Solomon & Amede, Tilahun & Descheemaeker, Katrien, 2009. "Livestock water productivity in mixed crop-livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement," Agricultural Systems, Elsevier, vol. 102(1-3), pages 33-40, October.
    10. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
    11. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    12. Upali A. Amarasinghe & Vladimir Smakhtin, 2014. "Water productivity and water footprint: misguided concepts or useful tools in water management and policy?," Water International, Taylor & Francis Journals, vol. 39(7), pages 1000-1017, November.
    13. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    14. Erenstein, Olaf, 2009. "Comparing water management in rice-wheat production systems in Haryana, India and Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 96(12), pages 1799-1806, December.
    15. Upali A. Amarasinghe & R.P. S. Malik & Bharat R. Sharma, 2010. "Overcoming growing water scarcity: Exploring potential improvements in water productivity in India," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 188-199, August.
    16. Amarasinghe, Upali A. & Muthuwatta, Lal & Smakhtin, Vladimir & Surinaidu, Lagudu & Natarajan, R. & Chinnasamy, Pennan & Kakumanu, Krishna Reddy & Prathapar, Sanmugam A. & Jain, S. K. & Ghosh, N. C. & , 2016. "Reviving the Ganges water machine: potential and challenges to meet increasing water demand in the Ganges River Basin," IWMI Reports 246417, International Water Management Institute.
    17. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    18. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, K. V. G. K., 2008. "The lower Krishna Basin trajectory: relationships between basin development and downstream environmental degradation," IWMI Research Reports H041463, International Water Management Institute.
    19. Kumar, M. Dinesh & Trivedi, K. & Singh, O. P., 2009. "Analyzing the impact of quality and reliability of irrigation water on crop water productivity using an irrigation quality index," IWMI Books, Reports H042636, International Water Management Institute.
    20. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, Kamineni V.G.K., 2008. "The Lower Krishna Basin Trajectory: Relationships between Basin Development and Downstream Environmental Degradation," IWMI Research Reports 44515, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:9:p:1277-1286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.