IDEAS home Printed from https://ideas.repec.org/p/iwt/bosers/h041504.html
   My bibliography  Save this paper

Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis

Author

Listed:
  • Hussain, Intizar
  • Sakthivadivel, R
  • Amarasinghe, Upali

Abstract

No abstract is available for this item.

Suggested Citation

  • Hussain, Intizar & Sakthivadivel, R & Amarasinghe, Upali, 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," IWMI Books, Reports H041504, International Water Management Institute.
  • Handle: RePEc:iwt:bosers:h041504
    as

    Download full text from publisher

    File URL: https://publications.iwmi.org/pdf/H041504.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussain, I. & Sakthivadivel, R. & Amarasinghe, U. & Mudasser, M. & Molden, D., 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," IWMI Research Reports H031469, International Water Management Institute.
    2. Pintus, F., 1997. "Impact of irrigation, salinity and cultural practices on wheat yields in Southeastern Punjab: a study of Fordwah/Eastern Sadiqia area, Punjab, Pakistan," IWMI Research Reports H009220, International Water Management Institute.
    3. Chaudhary, T. N. & Bhatnagar, V. K., 1980. "Wheat root distribution, water extraction pattern and grain yield as influenced by time and rate of irrigation," Agricultural Water Management, Elsevier, vol. 3(2), pages 115-124, November.
    4. Murray-Rust, D. H. & Vander Velde, E. J., 1992. "Conjunctive use of canal water and groundwater in Punjab, Pakistan: management and policy options," IWMI Books, Reports H046340, International Water Management Institute.
    5. Hussain, Intizar & Sakthivadivel, Ramasamy & Amarasinghe, Upali A. & Mudasser, Muhammad & Molden, David J., 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," IWMI Research Reports 52972, International Water Management Institute.
    6. Hussain, Intizar & Sakthivadivel, R. & Amarasinghe, Upali A., 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," Book Chapters,, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    2. Vazifedoust, M. & van Dam, J.C. & Feddes, R.A. & Feizi, M., 2008. "Increasing water productivity of irrigated crops under limited water supply at field scale," Agricultural Water Management, Elsevier, vol. 95(2), pages 89-102, February.
    3. Akram, Agha Ali, 2014. "Agricultural Water Allocation Efficiency and Farmer Adaptation to Heterogeneous Water Availability in a Developing Country Canal Irrigation System," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170855, Agricultural and Applied Economics Association.
    4. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Mahboob, M. Golam, 2023. "Simulation of water productivity of wheat in northwestern Bangladesh using multi-satellite data," Agricultural Water Management, Elsevier, vol. 281(C).
    5. Aliasghar Montazar & E. Zadbagher, 2010. "An Analytical Hierarchy Model for Assessing Global Water Productivity of Irrigation Networks in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2817-2832, September.
    6. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    7. Kumar, M. Dinesh & Trivedi, K. & Singh, O. P., 2009. "Analyzing the impact of quality and reliability of irrigation water on crop water productivity using an irrigation quality index," IWMI Books, Reports H042636, International Water Management Institute.
    8. Hussain, Intizar & Sakthivadivel, R. & Amarasinghe, Upali A., 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," Book Chapters,, International Water Management Institute.
    9. Plénet, Daniel & Giauque, Pierre & Navarro, Eric & Millan, Muriel & Hilaire, Christian & Hostalnou, Eric & Lyoussoufi, Abder & Samie, Jean-François, 2009. "Using on-field data to develop the EFI© information system to characterise agronomic productivity and labour efficiency in peach (Prunus persica L. Batsch) orchards in France," Agricultural Systems, Elsevier, vol. 100(1-3), pages 1-10, April.
    10. Basel F. Y. Khader & Yigezu A. Yigezu & Mahmud A. Duwayri & Abdul Aziz Niane & Kamil Shideed, 2019. "Where in the value chain are we losing the most food? The case of wheat in Jordan," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(5), pages 1009-1027, October.
    11. Kelemework, D., 2008. "A comparative analysis of the technical efficiency of irrigated and rainfed agriculture: a case of Awash and Rift valleys of Ethiopia," Conference Papers h044137, International Water Management Institute.
    12. Vyshpolsky, F. & Mukhamedjanov, K. & Bekbaev, U. & Ibatullin, S. & Yuldashev, T. & Noble, A.D. & Mirzabaev, A. & Aw-Hassan, A. & Qadir, M., 2010. "Optimizing the rate and timing of phosphogypsum application to magnesium-affected soils for crop yield and water productivity enhancement," Agricultural Water Management, Elsevier, vol. 97(9), pages 1277-1286, September.
    13. Hussain, Intizar, 2004. "Have low irrigation service charges disadvantaged the poor?," Conference Papers h033989, International Water Management Institute.
    14. Ines, Amor V.M. & Honda, Kiyoshi & Das Gupta, Ashim & Droogers, Peter & Clemente, Roberto S., 2006. "Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 83(3), pages 221-232, June.
    15. Singh, R. & van Dam, J.C. & Feddes, R.A., 2006. "Water productivity analysis of irrigated crops in Sirsa district, India," Agricultural Water Management, Elsevier, vol. 82(3), pages 253-278, April.
    16. Mohammed Mainuddin & Mac Kirby, 2009. "Agricultural productivity in the lower Mekong Basin: trends and future prospects for food security," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 1(1), pages 71-82, February.
    17. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    18. Sikka, A. K. & Bhatnagar, P. R., 2006. "Realizing the potential: using pumps to enhance productivity in the Eastern Indo- Gangetic Plains," IWMI Books, Reports H039317, International Water Management Institute.
    19. Kumar, M. Dinesh & Trivedi, K. & Singh, O.P., 2009. "Analyzing the impact of quality and reliability of irrigation water on crop water productivity using an irrigation quality index," Book Chapters,, International Water Management Institute.
    20. Muthuwatta, L.P. & Rientjes, T.H.M. & Bos, M.G., 2013. "Strategies to increase wheat production in the water scarce Karkheh River Basin, Iran," Agricultural Water Management, Elsevier, vol. 124(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussain, Intizar & Sakthivadivel, R. & Amarasinghe, Upali A., 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," Book Chapters,, International Water Management Institute.
    2. Kumar, M. Dinesh & Trivedi, K. & Singh, O. P., 2009. "Analyzing the impact of quality and reliability of irrigation water on crop water productivity using an irrigation quality index," IWMI Books, Reports H042636, International Water Management Institute.
    3. Mohammed Mainuddin & Mac Kirby, 2009. "Agricultural productivity in the lower Mekong Basin: trends and future prospects for food security," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 1(1), pages 71-82, February.
    4. Vyshpolsky, F. & Mukhamedjanov, K. & Bekbaev, U. & Ibatullin, S. & Yuldashev, T. & Noble, A.D. & Mirzabaev, A. & Aw-Hassan, A. & Qadir, M., 2010. "Optimizing the rate and timing of phosphogypsum application to magnesium-affected soils for crop yield and water productivity enhancement," Agricultural Water Management, Elsevier, vol. 97(9), pages 1277-1286, September.
    5. Kumar, M. Dinesh & Trivedi, K. & Singh, O.P., 2009. "Analyzing the impact of quality and reliability of irrigation water on crop water productivity using an irrigation quality index," Book Chapters,, International Water Management Institute.
    6. Basel F. Y. Khader & Yigezu A. Yigezu & Mahmud A. Duwayri & Abdul Aziz Niane & Kamil Shideed, 2019. "Where in the value chain are we losing the most food? The case of wheat in Jordan," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(5), pages 1009-1027, October.
    7. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Mahboob, M. Golam, 2023. "Simulation of water productivity of wheat in northwestern Bangladesh using multi-satellite data," Agricultural Water Management, Elsevier, vol. 281(C).
    8. Aliasghar Montazar & E. Zadbagher, 2010. "An Analytical Hierarchy Model for Assessing Global Water Productivity of Irrigation Networks in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2817-2832, September.
    9. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    10. Sikka, A. K. & Bhatnagar, P. R., 2006. "Realizing the potential: using pumps to enhance productivity in the Eastern Indo- Gangetic Plains," IWMI Books, Reports H039317, International Water Management Institute.
    11. Hussain, Intizar, 2004. "Have low irrigation service charges disadvantaged the poor?," Conference Papers h033989, International Water Management Institute.
    12. Kelemework, D., 2008. "A comparative analysis of the technical efficiency of irrigated and rainfed agriculture: a case of Awash and Rift valleys of Ethiopia," Conference Papers h044137, International Water Management Institute.
    13. Akram, Agha Ali, 2014. "Agricultural Water Allocation Efficiency and Farmer Adaptation to Heterogeneous Water Availability in a Developing Country Canal Irrigation System," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170855, Agricultural and Applied Economics Association.
    14. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    15. Singh, R. & van Dam, J.C. & Feddes, R.A., 2006. "Water productivity analysis of irrigated crops in Sirsa district, India," Agricultural Water Management, Elsevier, vol. 82(3), pages 253-278, April.
    16. Plénet, Daniel & Giauque, Pierre & Navarro, Eric & Millan, Muriel & Hilaire, Christian & Hostalnou, Eric & Lyoussoufi, Abder & Samie, Jean-François, 2009. "Using on-field data to develop the EFI© information system to characterise agronomic productivity and labour efficiency in peach (Prunus persica L. Batsch) orchards in France," Agricultural Systems, Elsevier, vol. 100(1-3), pages 1-10, April.
    17. Ines, Amor V.M. & Honda, Kiyoshi & Das Gupta, Ashim & Droogers, Peter & Clemente, Roberto S., 2006. "Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 83(3), pages 221-232, June.
    18. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    19. Vazifedoust, M. & van Dam, J.C. & Feddes, R.A. & Feizi, M., 2008. "Increasing water productivity of irrigated crops under limited water supply at field scale," Agricultural Water Management, Elsevier, vol. 95(2), pages 89-102, February.
    20. Muthuwatta, L.P. & Rientjes, T.H.M. & Bos, M.G., 2013. "Strategies to increase wheat production in the water scarce Karkheh River Basin, Iran," Agricultural Water Management, Elsevier, vol. 124(C), pages 1-10.

    More about this item

    Keywords

    Wheat;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:bosers:h041504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.