IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v134y2015icp48-60.html
   My bibliography  Save this article

Economic trade-offs of biomass use in crop-livestock systems: Exploring more sustainable options in semi-arid Zimbabwe

Author

Listed:
  • Homann-Kee Tui, Sabine
  • Valbuena, Diego
  • Masikati, Patricia
  • Descheemaeker, Katrien
  • Nyamangara, Justice
  • Claessens, Lieven
  • Erenstein, Olaf
  • van Rooyen, Andre
  • Nkomboni, Daniel

Abstract

In complex mixed crop-livestock systems with limited resources and biomass scarcity, crop residues play an important but increasingly contested role. This paper focuses on farming systems in the semi-arid areas of Zimbabwe, where biomass production is limited and farmers integrate crop and livestock activities. Conservation Agriculture (CA) is promoted to intensify crop production, emphasizing the retention of surface mulch with crop residues (CR). This paper quantifies the associated potential economic trade-offs and profitability of using residues for soil amendment or as livestock feed, and explores alternative biomass production options. We draw on household surveys, stakeholder feedback, crop, livestock and economic modeling tools. We use the Trade-Off Analysis Model for Multi Dimensional Impact Assessment (TOA-MD) to compare different CR use scenarios at community level and for different farm types: particularly the current base system (cattle grazing of maize residues) and sustainable intensification alternatives based on a CA option (mulching using maize residues±inorganic fertilizer) and a maize–mucuna (Mucuna pruriens) rotation. Our results indicate that a maize–mucuna rotation can reduce trade-offs between CR uses for feed and mulch, providing locally available organic soil enhancement, supplementary feed and a potential source of income. Conservation Agriculture without fertilizer application and at non-subsidized fertilizer prices is not financially viable; whereas with subsidized fertilizer it can benefit half the farm population. The poverty effects of all considered alternative biomass options are however limited; they do not raise income sufficiently to lift farmers out of poverty. Further research is needed to establish the competitiveness of alternative biomass enhancing technologies and the socio-economic processes that can facilitate sustainable intensification of mixed crop-livestock systems, particularly in semi-arid environments.

Suggested Citation

  • Homann-Kee Tui, Sabine & Valbuena, Diego & Masikati, Patricia & Descheemaeker, Katrien & Nyamangara, Justice & Claessens, Lieven & Erenstein, Olaf & van Rooyen, Andre & Nkomboni, Daniel, 2015. "Economic trade-offs of biomass use in crop-livestock systems: Exploring more sustainable options in semi-arid Zimbabwe," Agricultural Systems, Elsevier, vol. 134(C), pages 48-60.
  • Handle: RePEc:eee:agisys:v:134:y:2015:i:c:p:48-60
    DOI: 10.1016/j.agsy.2014.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X14000894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2014.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rockstr m, J. & Barron, J. & Fox, P., 2003. "Water productivity in rain-fed agriculture: challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems," IWMI Books, Reports H032640, International Water Management Institute.
    2. Mazvimavi, Kizito & Twomlow, Steve, 2009. "Socioeconomic and institutional factors influencing adoption of conservation farming by vulnerable households in Zimbabwe," Agricultural Systems, Elsevier, vol. 101(1-2), pages 20-29, June.
    3. Unknown, 2004. "Tropical Legumes for Sustainable Farming Systems in Southern Africa and Australia," ACIAR Proceedings Series 135390, Australian Centre for International Agricultural Research.
    4. Haileslassie, Amare & Peden, Don & Gebreselassie, Solomon & Amede, Tilahun & Descheemaeker, Katrien, 2009. "Livestock water productivity in mixed crop-livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement," Agricultural Systems, Elsevier, vol. 102(1-3), pages 33-40, October.
    5. Frank Ellis & H Ade Freeman, 2004. "Rural Livelihoods and Poverty Reduction Strategies in Four African Countries," Journal of Development Studies, Taylor & Francis Journals, vol. 40(4), pages 1-30.
    6. Rufino, M.C. & Dury, J. & Tittonell, P. & van Wijk, M.T. & Herrero, M. & Zingore, S. & Mapfumo, P. & Giller, K.E., 2011. "Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe," Agricultural Systems, Elsevier, vol. 104(2), pages 175-190, February.
    7. Mazvimavi, Kizito & Ndlovu, Patrick V. & Nyathi, Putso & Minde, Isaac J., 2010. "Conservation Agriculture Practices and Adoption by Smallholder Farmers in Zimbabwe," 2010 AAAE Third Conference/AEASA 48th Conference, September 19-23, 2010, Cape Town, South Africa 96822, African Association of Agricultural Economists (AAAE).
    8. Henk A. J. Moll, 2005. "Costs and benefits of livestock systems and the role of market and nonmarket relationships," Agricultural Economics, International Association of Agricultural Economists, vol. 32(2), pages 181-193, March.
    9. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    10. John M. Antle, 2011. "Parsimonious Multi-dimensional Impact Assessment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(5), pages 1292-1311.
    11. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054, January.
    12. Tittonell, P. & van Wijk, M.T. & Rufino, M.C. & Vrugt, J.A. & Giller, K.E., 2007. "Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya," Agricultural Systems, Elsevier, vol. 95(1-3), pages 76-95, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olson, Kent & Gauto, Victor & Erenstein, Olaf & Teufel, Nils & Swain, Braja & Tui, Sabine Homann-Kee & Duncan, Alan, 2021. "Estimating Farmers’ Internal Value of Crop Residues in Smallholder Crop-Livestock Systems: A South Asia Case Study," 2021 Conference, August 17-31, 2021, Virtual 315188, International Association of Agricultural Economists.
    2. Wafa Ameur & Aymen Frija & Mohamed Arbi Abdeladhim & Chokri Thabet, 2021. "Patterns of Use of Residue Biomass in Cereal–Sheep Production Systems of North Africa: Case of Tunisia," Agriculture, MDPI, vol. 11(7), pages 1-18, June.
    3. Shikuku, Kelvin M. & Valdivia, Roberto O. & Paul, Birthe K. & Mwongera, Caroline & Winowiecki, Leigh & Läderach, Peter & Herrero, Mario & Silvestri, Silvia, 2017. "Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach," Agricultural Systems, Elsevier, vol. 151(C), pages 204-216.
    4. Li, Jintao & Li, Yixue, 2019. "Influence measurement of rapid urbanization on agricultural production factors based on provincial panel data," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 69-77.
    5. Sabine Homann-Kee Tui & Katrien Descheemaeker & Roberto O. Valdivia & Patricia Masikati & Gevious Sisito & Elisha N. Moyo & Olivier Crespo & Alex C. Ruane & Cynthia Rosenzweig, 2021. "Climate change impacts and adaptation for dryland farming systems in Zimbabwe: a stakeholder-driven integrated multi-model assessment," Climatic Change, Springer, vol. 168(1), pages 1-21, September.
    6. Rodriguez, D & de Voil, P & Rufino, MC & Odendo, M & van Wijk, MT, 2017. "To mulch or to munch? Big modelling of big data," Agricultural Systems, Elsevier, vol. 153(C), pages 32-42.
    7. Assogba, Gildas G.C. & Adam, Myriam & Berre, David & Descheemaeker, Katrien, 2022. "Managing biomass in semi-arid Burkina Faso: Strategies and levers for better crop and livestock production in contrasted farm systems," Agricultural Systems, Elsevier, vol. 201(C).
    8. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    9. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    10. Tittonell, Pablo & Gérard, Bruno & Erenstein, Olaf, 2015. "Tradeoffs around crop residue biomass in smallholder crop-livestock systems – What’s next?," Agricultural Systems, Elsevier, vol. 134(C), pages 119-128.
    11. Nhantumbo, Nascimento S. & Zivale, Clemente O. & Nhantumbo, Ivete S. & Gomes, Ana M., 2016. "Making agricultural intervention attractive to farmers in Africa through inclusive innovation systems," World Development Perspectives, Elsevier, vol. 4(C), pages 19-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grum, Berhane & Hessel, Rudi & Kessler, Aad & Woldearegay, Kifle & Yazew, Eyasu & Ritsema, Coen & Geissen, Violette, 2016. "A decision support approach for the selection and implementation of water harvesting techniques in arid and semi-arid regions," Agricultural Water Management, Elsevier, vol. 173(C), pages 35-47.
    2. Amrita Chatterjee & Arpita Ghose, 2016. "A dynamic economic model of soil conservation and drought tolerance involving genetically modified crops," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 18(1), pages 40-66, October.
    3. Verónica Borbolla-Pérez & Lourdes Georgina Iglesias-Andreu & Mauricio Luna-Rodríguez & Pablo Octavio-Aguilar, 2017. "Perceptions regarding the challenges and constraints faced by smallholder farmers of vanilla in Mexico," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2421-2441, December.
    4. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    5. U. Behera & P. Panigrahi & A. Sarangi, 2012. "Multiple Water Use Protocols in Integrated Farming System for Enhancing Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2605-2623, July.
    6. Atapattu, Sithara & Molden, David, 2006. "Achieving food and environmental security: better river basin management for healthy coastal zones," IWMI Books, Reports H039123, International Water Management Institute.
    7. Genesis T. Yengoh, 2012. "Climate and Food Production: Understanding Vulnerability from Past Trends in Africa’s Sudan-Sahel," Sustainability, MDPI, vol. 5(1), pages 1-20, December.
    8. Descheemaeker, K. & Bunting, S. W. & Bindraban, P. & Muthuri, C. & Molden, D. & Beveridge, M. & van Brakel, Martin & Herrero, M. & Clement, Floriane & Boelee, Eline & Jarvis, D. I., 2013. "Increasing water productivity in Agriculture," Book Chapters,, International Water Management Institute.
    9. Tsegay, Alemtsehay & Vanuytrecht, Eline & Abrha, Berhanu & Deckers, Jozef & Gebrehiwot, Kindeya & Raes, Dirk, 2015. "Sowing and irrigation strategies for improving rainfed tef (Eragrostis tef (Zucc.) Trotter) production in the water scarce Tigray region, Ethiopia," Agricultural Water Management, Elsevier, vol. 150(C), pages 81-91.
    10. Chimonyo, V.G.P. & Modi, A.T. & Mabhaudhi, T., 2016. "Water use and productivity of a sorghum–cowpea–bottle gourd intercrop system," Agricultural Water Management, Elsevier, vol. 165(C), pages 82-96.
    11. Noble, Andrew D. & Bossio, Deborah A. & Pretty, J. & Penning de Vries, F., 2008. "Bright spots: pathways to ensuring food security and environmental integrity," Book Chapters,, International Water Management Institute.
    12. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    13. Critchley, W. & Negi, G. & Brommer, M., 2008. "Local innovation in \u2018green water\u2019 management," IWMI Books, Reports H041596, International Water Management Institute.
    14. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    15. Masikati, P. & Manschadi, A. & van Rooyen, A. & Hargreaves, J., 2014. "Maize–mucuna rotation: An alternative technology to improve water productivity in smallholder farming systems," Agricultural Systems, Elsevier, vol. 123(C), pages 62-70.
    16. Noble, Andrew D. & Bossio, Deborah & Pretty, J. & Penning de Vries, F., 2008. "Bright spots: pathways to ensuring food security and environmental integrity," IWMI Books, Reports H041602, International Water Management Institute.
    17. Zoebl, Dirk, 2006. "Is water productivity a useful concept in agricultural water management?," Agricultural Water Management, Elsevier, vol. 84(3), pages 265-273, August.
    18. repec:mth:jas888:v:6:y:2018:i:2:p:1-16 is not listed on IDEAS
    19. Mainuddin, Mohammed & Kirby, Mac, 2009. "Spatial and temporal trends of water productivity in the lower Mekong River Basin," Agricultural Water Management, Elsevier, vol. 96(11), pages 1567-1578, November.
    20. Oweis, T. & Hachum, A., 2009. "Supplemental irrigation for improved rainfed agriculture in WANA region," IWMI Books, Reports H041999, International Water Management Institute.
    21. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:134:y:2015:i:c:p:48-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.