IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v123y2014icp62-70.html
   My bibliography  Save this article

Maize–mucuna rotation: An alternative technology to improve water productivity in smallholder farming systems

Author

Listed:
  • Masikati, P.
  • Manschadi, A.
  • van Rooyen, A.
  • Hargreaves, J.

Abstract

Rain-fed crop production systems in the semi-arid tropics of Zimbabwe are characterized by low water productivity (WP), which is partly attributed to inherent low soil fertility, and further exacerbated by continuous cropping without addition of adequate organic and inorganic fertilizers due to unavailability and high costs. A simulation modeling approach was used to evaluate potential interventions that can be used as entry points to improve crop water productivity. Low-cost interventions that use locally available organic inputs were evaluated using the Agriculture Production Systems sIMulator (APSIM). The farmer practice (FP) was compared to interventions comprising manure application (MN) and maize–mucuna rotation (MMR). Their potential effects on crop water productivity, dynamics of soil organic carbon (SOC) and total nitrogen (TN) were assessed. Average maize grain water productivity was 0.32, 0.40 and 0.70kgm−3 under the FP, MN and MMR treatments, respectively, while that of mucuna biomass (Mucuna pruriens) was 1.34kgm−3. Cropping under the FP and MN treatments showed negative trends in SOC and TN over 30years, with average losses ranging from 17 to 74kgha−1yr−1 and 6 to 16kgha−1yr−1, respectively. In contrast, the MMR treatment showed positive trends in both soil organic carbon (SOC) and total nitrogen (TN). The SOC and TN increased by 2.6–194kgha−1yr−1 and 6–14kgha−1yr−1, respectively. According to the simulation results it can be concluded that the MMR treatment can improve the water productivity of smallholder maize systems in the semi-arid areas of Zimbabwe under nutrient-depleted soil conditions and can also contribute to the building up of SOC and TN.

Suggested Citation

  • Masikati, P. & Manschadi, A. & van Rooyen, A. & Hargreaves, J., 2014. "Maize–mucuna rotation: An alternative technology to improve water productivity in smallholder farming systems," Agricultural Systems, Elsevier, vol. 123(C), pages 62-70.
  • Handle: RePEc:eee:agisys:v:123:y:2014:i:c:p:62-70
    DOI: 10.1016/j.agsy.2013.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X13001133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2013.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rockström, J. & Barron, J. & Fox, P., 2003. "Water productivity in rain-fed agriculture: challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems," IWMI Books, Reports H032640, International Water Management Institute.
    2. Cai, X. & Rosegrant, M. W., 2003. "World water productivity: current situation and future options," Book Chapters,, International Water Management Institute.
    3. Probert, M. E. & Dimes, J. P. & Keating, B. A. & Dalal, R. C. & Strong, W. M., 1998. "APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems," Agricultural Systems, Elsevier, vol. 56(1), pages 1-28, January.
    4. Cai, X. & Rosegrant, M. W., 2003. "World water productivity: current situation and future options," IWMI Books, Reports H032641, International Water Management Institute.
    5. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Araya, A. & Kisekka, Isaya & Gowda, Prasanna H. & Prasad, P.V. Vara, 2017. "Evaluation of water-limited cropping systems in a semi-arid climate using DSSAT-CSM," Agricultural Systems, Elsevier, vol. 150(C), pages 86-98.
    2. Chen, Shilei & Huo, Zailin & Xu, Xu & Huang, Guanhua, 2019. "A conceptual agricultural water productivity model considering under field capacity soil water redistribution applicable for arid and semi-arid areas with deep groundwater," Agricultural Water Management, Elsevier, vol. 213(C), pages 309-323.
    3. Yang, Xuan & Zheng, Lina & Yang, Qian & Wang, Zikui & Cui, Song & Shen, Yuying, 2018. "Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using," Agricultural Systems, Elsevier, vol. 166(C), pages 111-123.
    4. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Rathnayake, W.M.U.K. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2017. "Improving water productivity in moisture-limited rice-based cropping systems through incorporation of maize and mungbean: A modelling approach," Agricultural Water Management, Elsevier, vol. 189(C), pages 111-122.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oker, Tobias E. & Kisekka, Isaya & Sheshukov, Aleksey Y. & Aguilar, Jonathan & Rogers, Danny H., 2018. "Evaluation of maize production under mobile drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 11-21.
    2. Geries, L.S.M. & El-Shahawy, T.A. & Moursi, E.A., 2021. "Cut-off irrigation as an effective tool to increase water-use efficiency, enhance productivity, quality and storability of some onion cultivars," Agricultural Water Management, Elsevier, vol. 244(C).
    3. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    4. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    5. Haileslassie, Amare & Peden, Don & Gebreselassie, Solomon & Amede, Tilahun & Descheemaeker, Katrien, 2009. "Livestock water productivity in mixed crop-livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement," Agricultural Systems, Elsevier, vol. 102(1-3), pages 33-40, October.
    6. Garci­a-Vila, M. & Lorite, I.J. & Soriano, M.A. & Fereres, E., 2008. "Management trends and responses to water scarcity in an irrigation scheme of Southern Spain," Agricultural Water Management, Elsevier, vol. 95(4), pages 458-468, April.
    7. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Sasidharan, Renjith Puthiyedathu & Yadav, Bhagirath Mal & Kumar, Mahesh & Santra, Priyabrata & Yadava, Narendra Dev & Yadav, Om Parka, 2017. "Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 187(C), pages 232-245.
    8. Chikowo, R. & Corbeels, M. & Tittonell, P. & Vanlauwe, B. & Whitbread, A. & Giller, K.E., 2008. "Aggregating field-scale knowledge into farm-scale models of African smallholder systems: Summary functions to simulate crop production using APSIM," Agricultural Systems, Elsevier, vol. 97(3), pages 151-166, June.
    9. Nyakudya, I.W. & Stroosnijder, L., 2011. "Water management options based on rainfall analysis for rainfed maize (Zea mays L.) production in Rushinga district, Zimbabwe," Agricultural Water Management, Elsevier, vol. 98(10), pages 1649-1659, August.
    10. Alauddin, Mohammad & Quiggin, John, 2008. "Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options," Ecological Economics, Elsevier, vol. 65(1), pages 111-124, March.
    11. Stewart, L.K. & Charlesworth, P.B. & Bristow, K.L. & Thorburn, P.J., 2006. "Estimating deep drainage and nitrate leaching from the root zone under sugarcane using APSIM-SWIM," Agricultural Water Management, Elsevier, vol. 81(3), pages 315-334, March.
    12. Chauhan, Yashvir S., 2010. "Potential productivity and water requirements of maize-peanut rotations in Australian semi-arid tropical environments--A crop simulation study," Agricultural Water Management, Elsevier, vol. 97(3), pages 457-464, March.
    13. Cao, Xinchun & Cui, Simeng & Shu, Rui & Wu, Mengyang, 2020. "Misestimation of water saving in agricultural virtual water trade by not considering the role of irrigation," Agricultural Water Management, Elsevier, vol. 241(C).
    14. Kodur, S., 2017. "Improving the prediction of soil evaporation for different soil types under dryland cropping," Agricultural Water Management, Elsevier, vol. 193(C), pages 131-141.
    15. Dokoohaki, Hamze & Miguez, Fernando E. & Archontoulis, Sotirios & Laird, David, 2018. "Use of inverse modelling and Bayesian optimization for investigating the effect of biochar on soil hydrological properties," Agricultural Water Management, Elsevier, vol. 208(C), pages 268-274.
    16. Parsons, David & Nicholson, Charles F. & Blake, Robert W. & Ketterings, Quirine M. & Ramírez-Aviles, Luis & Fox, Danny G. & Tedeschi, Luis O. & Cherney, Jerome H., 2011. "Development and evaluation of an integrated simulation model for assessing smallholder crop-livestock production in Yucatán, Mexico," Agricultural Systems, Elsevier, vol. 104(1), pages 1-12, January.
    17. Snow, V. O. & Bond, W. J. & Myers, B. J. & Theiveyanathan, S. & Smith, C. J. & Benyon, R. G., 1999. "Modelling the water balance of effluent-irrigated trees," Agricultural Water Management, Elsevier, vol. 39(1), pages 47-67, February.
    18. Hossain, Istiaque & Siwar, Chamhuri & Bin Mokhta, Mazlin & Dey, Madan Mohan & Jaafar, Abd. Hamid & Alam, Md. Mahmudul, 2019. "Water Productivity for Boro Rice Production: Study on floodplain Beels in Rajshahi, Bangladesh," OSF Preprints tm9na, Center for Open Science.
    19. Nishat, S. & Guo, Y. & Baetz, B.W., 2007. "Development of a simplified continuous simulation model for investigating long-term soil moisture fluctuations," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 53-63, August.
    20. El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:123:y:2014:i:c:p:62-70. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/agsy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.