IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v302y2024ics0378377424003184.html
   My bibliography  Save this article

Predicted feasibility and economic return of drainage water recycling in an arid region

Author

Listed:
  • Kosari, Sina
  • Parsinejad, Masoud
  • Mokhtaran, Ali
  • Zebardast, Shahram

Abstract

Significance of using drainage water (DW) is rising as freshwater resources are under growing pressure around the world, particularly in arid regions like Khuzestan province in Iran, which faces both water scarcity and excessive agricultural DW disposal predicaments. Drainage water recycling (DWR), capturing and storing DW for reuse as supplemental irrigation, is becoming increasingly popular due to its ability to fulfill both production and environmental objectives. In this context, a theoretical study was conducted to predict the impact of DWR on sugarcane yield within Amirkabir Agro-industry. The study also aimed to suggest an optimal proportion of reusable DW, taking into account the highest overall economic and environmental benefits. For this purpose, an all-inclusive index named the comprehensive profitability of consumed water (CPCW) was introduced and employed to incorporate various critical attributes of DWR system, in terms of crop yield, cost opportunity, disposal cost, and environmental impacts. Demonstrating an optimal ratio of 23 % for recycled DW, the study showed a 19 % reduction in sugarcane yield resulting from a 45 % increase in irrigation water salinity, leading to the highest CPCW index. The calculated water savings can increase alternate opportunity costs to supplement irrigation for downstream date orchards (28780 ha) or wheat fields (86400 ha). The reduction in drainage disposal costs had a significant impact on improving the CPCW index. To comply more with the priorities of the farmers, a more reasonable reduction of 15 % in the crop yield was considered, which led to 20 % proportional recycled DW. This practice reused 323 Mm3 of drainage water. A sum of 666 Mm3 of water from Karun River was conserved through this practice. Overall, the proposed DWR practice has proven highly effective in substantially reducing the adverse environmental consequences of DW disposal to downstream natural water bodies.

Suggested Citation

  • Kosari, Sina & Parsinejad, Masoud & Mokhtaran, Ali & Zebardast, Shahram, 2024. "Predicted feasibility and economic return of drainage water recycling in an arid region," Agricultural Water Management, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003184
    DOI: 10.1016/j.agwat.2024.108983
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424003184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Mehdi Ketabchy, 2021. "Investigating the Impacts of the Political System Components in Iran on the Existing Water Bankruptcy," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    4. Moursi, Hossam & Youssef, Mohamed A. & Poole, Chad A. & Castro-Bolinaga, Celso F. & Chescheir, George M. & Richardson, Robert J., 2023. "Drainage water recycling reduced nitrogen, phosphorus, and sediment losses from a drained agricultural field in eastern North Carolina, U.S.A," Agricultural Water Management, Elsevier, vol. 279(C).
    5. Reinhart, Benjamin D. & Frankenberger, Jane R. & Hay, Christopher H. & Helmers, Matthew J., 2019. "Simulated water quality and irrigation benefits from drainage water recycling at two tile-drained sites in the U.S. Midwest," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Albaji, Mohammad & Shahnazari, Ali & Behzad, Majid & Naseri, AbdAli & BoroomandNasab, Saeed & Golabi, Mona, 2010. "Comparison of different irrigation methods based on the parametric evaluation approach in Dosalegh plain: Iran," Agricultural Water Management, Elsevier, vol. 97(7), pages 1093-1098, July.
    7. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623, January.
    8. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Awad, J., 2020. "Management of soil salinity associated with irrigation of protected crops," Agricultural Water Management, Elsevier, vol. 227(C).
    9. Hassanli, Ali Morad & Ahmadirad, Shahram & Beecham, Simon, 2010. "Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 97(2), pages 357-362, February.
    10. Smith, R. J. & Hancock, N. H., 1986. "Leaching requirement of irrigated soils," Agricultural Water Management, Elsevier, vol. 11(1), pages 13-22, March.
    11. Yaeger, Mary A. & Massey, Joseph H. & Reba, Michele L. & Adviento-Borbe, M. Arlene A., 2018. "Trends in the construction of on-farm irrigation reservoirs in response to aquifer decline in eastern Arkansas: Implications for conjunctive water resource management," Agricultural Water Management, Elsevier, vol. 208(C), pages 373-383.
    12. Moursi, Hossam & Youssef, Mohamed A. & Chescheir, George M., 2022. "Development and application of DRAINMOD model for simulating crop yield and water conservation benefits of drainage water recycling," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Kaveh Madani, 2014. "Water management in Iran: what is causing the looming crisis?," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(4), pages 315-328, December.
    14. A. Izady & O. Abdalla & M. Sadeghi & M. Majidi & A. Karimi & M. Chen, 2016. "A Novel Approach to Modeling Wastewater Evaporation Based on Dimensional Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2801-2814, June.
    15. Brett Bryan & John Kandulu, 2011. "Designing a Policy Mix and Sequence for Mitigating Agricultural Non-Point Source Pollution in a Water Supply Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 875-892, February.
    16. Kaur, Harpreet & Nelson, Kelly A. & Singh, Gurbir & Veum, Kristen S. & Davis, Morgan P. & Udawatta, Ranjith P. & Kaur, Gurpreet, 2023. "Drainage water management impacts soil properties in floodplain soils in the midwestern, USA," Agricultural Water Management, Elsevier, vol. 279(C).
    17. Mehri, Akbar & Mohammadi, Amir Soltani & Ebrahimian, Hamed & Boroomandnasab, Saeid, 2023. "Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software," Agricultural Water Management, Elsevier, vol. 276(C).
    18. Mehran Homayounfar & Sai Lai & Mehdi Zomorodian & Ali Sepaskhah & Arman Ganji, 2014. "Optimal Crop Water Allocation in Case of Drought Occurrence, Imposing Deficit Irrigation with Proportional Cutback Constraint," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3207-3225, August.
    19. Milad Nouri, 2023. "Drought Assessment Using Gridded Data Sources in Data-Poor Areas with Different Aridity Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4327-4343, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    2. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    4. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, K. V. G. K., 2008. "The lower Krishna Basin trajectory: relationships between basin development and downstream environmental degradation," IWMI Research Reports H041463, International Water Management Institute.
    5. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    6. Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
    7. Ireneusz Cymes & Ewa Dragańska & Zbigniew Brodziński, 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change," Agriculture, MDPI, vol. 12(6), pages 1-14, May.
    8. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    9. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    10. Bastiaanssen, W. G. M. & Chandrapala, L., 2003. "Water balance variability across Sri Lanka for assessing agricultural and environmental water use," Agricultural Water Management, Elsevier, vol. 58(2), pages 171-192, February.
    11. repec:osf:osfxxx:tm9na_v1 is not listed on IDEAS
    12. Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
    13. Moursi, Hossam & Youssef, Mohamed A. & Poole, Chad A. & Castro-Bolinaga, Celso F. & Chescheir, George M. & Richardson, Robert J., 2023. "Drainage water recycling reduced nitrogen, phosphorus, and sediment losses from a drained agricultural field in eastern North Carolina, U.S.A," Agricultural Water Management, Elsevier, vol. 279(C).
    14. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    15. Jeanne PERRIER, 2019. "Les lois palestiniennes de l’eau : entre centralisation, décentralisation et mise en invisibilité," Working Paper f2757814-3bd9-4fc1-970d-2, Agence française de développement.
    16. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    17. Muhammad Usman & Talha Mahmood & Christopher Conrad & Habib Ullah Bodla, 2020. "Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    18. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    19. Mainuddin, M., 2010. "Water-use accounts in CPWF basins: simple water-use accounting of the Yellow River Basin," IWMI Working Papers H042849, International Water Management Institute.
    20. Vyshpolsky, F. & Mukhamedjanov, K. & Bekbaev, U. & Ibatullin, S. & Yuldashev, T. & Noble, A.D. & Mirzabaev, A. & Aw-Hassan, A. & Qadir, M., 2010. "Optimizing the rate and timing of phosphogypsum application to magnesium-affected soils for crop yield and water productivity enhancement," Agricultural Water Management, Elsevier, vol. 97(9), pages 1277-1286, September.
    21. Singh, Uttam Kumar & Ren, Li & Kang, Shaozhong, 2010. "Simulation of soil water in space and time using an agro-hydrological model and remote sensing techniques," Agricultural Water Management, Elsevier, vol. 97(8), pages 1210-1220, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.