IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v223y2019ic31.html
   My bibliography  Save this article

Simulated water quality and irrigation benefits from drainage water recycling at two tile-drained sites in the U.S. Midwest

Author

Listed:
  • Reinhart, Benjamin D.
  • Frankenberger, Jane R.
  • Hay, Christopher H.
  • Helmers, Matthew J.

Abstract

Drainage water recycling, the practice of capturing and storing water drained from fields and using the stored water to irrigate crops when there is a soil water deficit, has been proposed to increase the resiliency of drained agriculture, but the potential benefits have not been quantified. This study determined irrigation and nutrient reduction benefits of drainage water recycling for various reservoir sizes at two tile-drained sites in the U.S. Midwest with differing climates and soils. Field and reservoir water budgets were developed using ten years of measured tile drain flow and weather data. The calculated volume of drain flow that could be captured by the reservoir was combined with measured nitrate-nitrogen and soluble reactive phosphorus concentrations to determine nutrient load reductions. At the Indiana site, a reservoir size representing 6% of the field area (3.05 m depth) would provide water storage for meeting irrigation requirements in all ten years. This reservoir would capture 37% of annual tile drain flow on average, resulting in average annual load reductions of 11 kg ha−1 yr−1 (37%) for nitrate-N and 0.05 kg ha−1 yr−1 (39%) for soluble reactive phosphorus. At the Iowa site, a reservoir size of 8% was necessary to meet the irrigation requirements, which were zero in most years but were higher than at the Indiana site for the three years in which irrigation was needed. This larger reservoir would capture 23% of annual tile drain flow on average, with average annual load reductions of 9 kg ha−1 yr−1 (24%) for nitrate-nitrogen and 0.02 kg ha−1 yr−1 (21%) for soluble reactive phosphorus. Quantifying nutrient load reductions and irrigation potential at these two sites showed that drainage water recycling is a promising practice for the tile-drained landscape of the U.S. Midwest, providing a strategy to manage water-related risks while also contributing to water quality goals.

Suggested Citation

  • Reinhart, Benjamin D. & Frankenberger, Jane R. & Hay, Christopher H. & Helmers, Matthew J., 2019. "Simulated water quality and irrigation benefits from drainage water recycling at two tile-drained sites in the U.S. Midwest," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:223:y:2019:i:c:31
    DOI: 10.1016/j.agwat.2019.105699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419306535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ying Ouyang & Joel O. Paz & Gary Feng & John J. Read & Ardeshir Adeli & Johnie N. Jenkins, 2017. "A Model to Estimate Hydrological Processes and Water Budget in an Irrigation Farm Pond," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2225-2241, May.
    2. Baule, William & Allred, Barry & Frankenberger, Jane & Gamble, Debra & Andresen, Jeff & Gunn, Kpoti M. & Brown, Larry, 2017. "Northwest Ohio crop yield benefits of water capture and subirrigation based on future climate change projections," Agricultural Water Management, Elsevier, vol. 189(C), pages 87-97.
    3. Yeh, Naichia & Yeh, Pulin & Chang, Yuan-Hsiou, 2015. "Artificial floating islands for environmental improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 616-622.
    4. Gunn, Kpoti M. & Baule, William J. & Frankenberger, Jane R. & Gamble, Debra L. & Allred, Barry J. & Andresen, Jeff A. & Brown, Larry C., 2018. "Modeled climate change impacts on subirrigated maize relative yield in northwest Ohio," Agricultural Water Management, Elsevier, vol. 206(C), pages 56-66.
    5. Yaeger, Mary A. & Massey, Joseph H. & Reba, Michele L. & Adviento-Borbe, M. Arlene A., 2018. "Trends in the construction of on-farm irrigation reservoirs in response to aquifer decline in eastern Arkansas: Implications for conjunctive water resource management," Agricultural Water Management, Elsevier, vol. 208(C), pages 373-383.
    6. Erica Camnasio & Gianfranco Becciu, 2011. "Evaluation of the Feasibility of Irrigation Storage in a Flood Detention Pond in an Agricultural Catchment in Northern Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1489-1508, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moursi, Hossam & Youssef, Mohamed A. & Poole, Chad A. & Castro-Bolinaga, Celso F. & Chescheir, George M. & Richardson, Robert J., 2023. "Drainage water recycling reduced nitrogen, phosphorus, and sediment losses from a drained agricultural field in eastern North Carolina, U.S.A," Agricultural Water Management, Elsevier, vol. 279(C).
    2. Moursi, Hossam & Youssef, Mohamed A. & Chescheir, George M., 2022. "Development and application of DRAINMOD model for simulating crop yield and water conservation benefits of drainage water recycling," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Sisi Li & Yanhua Zhuang & Hongbin Liu & Zhen Wang & Fulin Zhang & Mingquan Lv & Limei Zhai & Xianpeng Fan & Shiwei Niu & Jingrui Chen & Changxu Xu & Na Wang & Shuhe Ruan & Wangzheng Shen & Menghan Mi , 2023. "Enhancing rice production sustainability and resilience via reactivating small water bodies for irrigation and drainage," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shangzhou Song & Shaohua Wang & Huichun Ye & Yong Guan, 2022. "Exploratory Analysis on the Spatial Distribution and Influencing Factors of Beitang Landscape in the Shangzhuang Basin," Land, MDPI, vol. 11(3), pages 1-22, March.
    2. Thibaut Cuvelier & Pierre Archambeau & Benjamin Dewals & Quentin Louveaux, 2018. "Comparison Between Robust and Stochastic Optimisation for Long-term Reservoir Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1599-1614, March.
    3. Giovanni Ravazzani & Paride Gianoli & Stefania Meucci & Marco Mancini, 2014. "Assessing Downstream Impacts of Detention Basins in Urbanized River Basins Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1033-1044, March.
    4. Yuan-Hsiou Chang & Ting-Jie Zhuang & Tsai-Fu Chuang & Bing-Yu Wu & Hsiao-ling Lu & Pen-Yuan Chen, 2017. "Using Green Water Farm to Improve Ecological Restoration," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    5. Fan Wei & Munazzam Jawad Shahid & Ghalia S. H. Alnusairi & Muhammad Afzal & Aziz Khan & Mohamed A. El-Esawi & Zohaib Abbas & Kunhua Wei & Ihsan Elahi Zaheer & Muhammad Rizwan & Shafaqat Ali, 2020. "Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review," Sustainability, MDPI, vol. 12(14), pages 1-35, July.
    6. Momina Yasin & Muhammad Tauseef & Zaniab Zafar & Moazur Rahman & Ejazul Islam & Samina Iqbal & Muhammad Afzal, 2021. "Plant-Microbe Synergism in Floating Treatment Wetlands for the Enhanced Removal of Sodium Dodecyl Sulphate from Water," Sustainability, MDPI, vol. 13(5), pages 1-11, March.
    7. Yiting Qi & Yu Bai & Xin Cao & Erpeng Li, 2022. "The Deformation and Shear Vortex Width of Flexible Vegetation Roots in an Artificial Floating Bed Channel," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    8. Ying Ouyang & Gary Feng & Theodor D. Leininger & John Read & Johnie N. Jenkins, 2018. "Pond and Irrigation Model (PIM): a Tool for Simultaneously Evaluating Pond Water Availability and Crop Irrigation Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2969-2983, July.
    9. Belén López-Felices & José A. Aznar-Sánchez & Juan F. Velasco-Muñoz & María Piquer-Rodríguez, 2020. "Contribution of Irrigation Ponds to the Sustainability of Agriculture. A Review of Worldwide Research," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
    10. Sisi Li & Yanhua Zhuang & Hongbin Liu & Zhen Wang & Fulin Zhang & Mingquan Lv & Limei Zhai & Xianpeng Fan & Shiwei Niu & Jingrui Chen & Changxu Xu & Na Wang & Shuhe Ruan & Wangzheng Shen & Menghan Mi , 2023. "Enhancing rice production sustainability and resilience via reactivating small water bodies for irrigation and drainage," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    12. Amanda M. Nelson & Nicolas E. Quintana Ashwell & Christopher D. Delhom & Drew M. Gholson, 2022. "Leveraging Big Data to Preserve the Mississippi River Valley Alluvial Aquifer: A Blueprint for the National Center for Alluvial Aquifer Research," Land, MDPI, vol. 11(11), pages 1-17, October.
    13. Wen-Wen Chou & Soen-Han Lee & Chen-Fa Wu, 2013. "Evaluation of the Preservation Value and Location of Farm Ponds in Yunlin County, Taiwan," IJERPH, MDPI, vol. 11(1), pages 1-25, December.
    14. Tran, Dat Q. & Kovacs, Kent F. & West, Grant H., 2020. "Spatial economic predictions of managed aquifer recharge for an agricultural landscape," Agricultural Water Management, Elsevier, vol. 241(C).
    15. Hamideh Noory & Mona Deyhool & Farhad Mirzaei, 2019. "A Simulation-Optimization Model for Conjunctive Use of Canal and Pond in Irrigating Paddy Fields," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1053-1068, February.
    16. Perin, Vinicius & Tulbure, Mirela G. & Gaines, Mollie D. & Reba, Michele L. & Yaeger, Mary A., 2021. "On-farm reservoir monitoring using Landsat inundation datasets," Agricultural Water Management, Elsevier, vol. 246(C).
    17. Mahfuzur Khan & Clifford Voss & Winston Yu & Holly Michael, 2014. "Water Resources Management in the Ganges Basin: A Comparison of Three Strategies for Conjunctive Use of Groundwater and Surface Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1235-1250, March.
    18. Giuseppe Del Giudice & Giacomo Rasulo & Daniele Siciliano & Roberta Padulano, 2014. "Combined Effects of Parallel and Series Detention Basins for Flood Peak Reduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3193-3205, August.
    19. Basso, Bruno & Jones, James W. & Antle, John & Martinez-Feria, Rafael A. & Verma, Brahm, 2021. "Enabling circularity in grain production systems with novel technologies and policy," Agricultural Systems, Elsevier, vol. 193(C).
    20. Moursi, Hossam & Youssef, Mohamed A. & Chescheir, George M., 2022. "Development and application of DRAINMOD model for simulating crop yield and water conservation benefits of drainage water recycling," Agricultural Water Management, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:223:y:2019:i:c:31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.