IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i8p1210-1220.html
   My bibliography  Save this article

Simulation of soil water in space and time using an agro-hydrological model and remote sensing techniques

Author

Listed:
  • Singh, Uttam Kumar
  • Ren, Li
  • Kang, Shaozhong

Abstract

Complete knowledge of all components of the water balance is essential to optimize water use in irrigated agriculture. However, most water balance components are very difficult to measure in terms of the required time interval and due to the complexity of the processes. An unsaturated zone model is a useful tool for predicting the effects of agricultural management on crop water use and can be used to optimize agricultural practices in view of minimizing the agricultural water use. For the irrigated areas in Minqin County of northwest China, the physically based one-dimensional agro-hydrological model SWAP (Soil, Water, Atmosphere and Plant) for water movement and crop growth was applied to reveal all the components of the water balance at multiple sites. This model has a varying level of abstraction referring to simulated processes in time and space. A combination of field, meteorological and aerial data was used as input to the model. Inverse modeling of evapotranspiration (ET) fluxes was followed to calibrate the soil hydraulic functions by using the parameter estimation package PEST. Surface Energy Balance System (SEBS) was used to estimate actual ET fluxes from NOAA AVHRR satellite images. Simulations were carried out for 15 different sites in Minqin County by using wheat (Triticum aestivum L.) as a test crop, but only three sites were selected for model calibration and evaluation. The period of simulation for the whole wheat growing season was from 1 April 2004 to 30 July 2004 and detailed analyses were performed for all sites. SWAP simulated soil water dynamics well and the distributed SWAP model is a useful tool to analyze all water balance components.

Suggested Citation

  • Singh, Uttam Kumar & Ren, Li & Kang, Shaozhong, 2010. "Simulation of soil water in space and time using an agro-hydrological model and remote sensing techniques," Agricultural Water Management, Elsevier, vol. 97(8), pages 1210-1220, August.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:8:p:1210-1220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00099-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Ines, Amor V. M. & Gupta, Ashim Das & Loof, Rainer, 2002. "Application of GIS and crop growth models in estimating water productivity," Agricultural Water Management, Elsevier, vol. 54(3), pages 205-225, April.
    3. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    4. Droogers, P. & Bastiaanssen, W. G. M. & Beyazgul, M. & Kayam, Y. & Kite, G. W. & Murray-Rust, H., 2000. "Distributed agro-hydrological modeling of an irrigation system in western Turkey," Agricultural Water Management, Elsevier, vol. 43(2), pages 183-202, March.
    5. Xevi, E. & Gilley, J. & Feyen, J., 1996. "Comparative study of two crop yield simulation models," Agricultural Water Management, Elsevier, vol. 30(2), pages 155-173, April.
    6. Tuong, T. P. & Bhuiyan, S. I., 1999. "Increasing water-use efficiency in rice production: farm-level perspectives," Agricultural Water Management, Elsevier, vol. 40(1), pages 117-122, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengfu Yuan & Shaoyuan Feng & Zailin Huo & Quanyi Ji, 2019. "Simulation of Saline Water Irrigation for Seed Maize in Arid Northwest China Based on SWAP Model," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
    2. Pinto, Victor Meriguetti & Reichardt, Klaus & van Dam, Jos & Lier, Quirijn de Jong van & Bruno, Isabeli Pereira & Durigon, Angelica & Dourado-Neto, Durval & Bortolotto, Rafael Pivotto, 2015. "Deep drainage modeling for a fertigated coffee plantation in the Brazilian savanna," Agricultural Water Management, Elsevier, vol. 148(C), pages 130-140.
    3. Shafiei, Mojtaba & Ghahraman, Bijan & Saghafian, Bahram & Davary, Kamran & Pande, Saket & Vazifedoust, Majid, 2014. "Uncertainty assessment of the agro-hydrological SWAP model application at field scale: A case study in a dry region," Agricultural Water Management, Elsevier, vol. 146(C), pages 324-334.
    4. Xiaowen Wang & Huanjie Cai & Liang Li & Xiaoyun Wang, 2020. "Estimating Soil Water Content and Evapotranspiration of Winter Wheat under Deficit Irrigation Based on SWAP Model," Sustainability, MDPI, vol. 12(22), pages 1-29, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ines, Amor V.M. & Honda, Kiyoshi & Das Gupta, Ashim & Droogers, Peter & Clemente, Roberto S., 2006. "Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 83(3), pages 221-232, June.
    2. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    3. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    4. Ines, Amor V. M. & Gupta, Ashim Das & Loof, Rainer, 2002. "Application of GIS and crop growth models in estimating water productivity," Agricultural Water Management, Elsevier, vol. 54(3), pages 205-225, April.
    5. Zhang, H., 2003. "Improving water productivity through deficit irrigation: examples from Syria, the North China Plain and Oregon, USA," IWMI Books, Reports H032649, International Water Management Institute.
    6. Chen, Shuai & Mao, Xiaomin & Barry, David Andrew & Yang, Jian, 2019. "Model of crop growth, water flow, and solute transport in layered soil," Agricultural Water Management, Elsevier, vol. 221(C), pages 160-174.
    7. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    8. Lee, Teang Shui & Haque, M. Aminul & Najim, M.M.M., 2005. "Scheduling the cropping calendar in wet-seeded rice schemes in Malaysia," Agricultural Water Management, Elsevier, vol. 71(1), pages 71-84, January.
    9. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.
    10. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, K. V. G. K., 2008. "The lower Krishna Basin trajectory: relationships between basin development and downstream environmental degradation," IWMI Research Reports H041463, International Water Management Institute.
    12. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    13. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    15. Dennis Wichelns, 2015. "Water productivity and water footprints are not helpful in determining optimal water allocations or efficient management strategies," Water International, Taylor & Francis Journals, vol. 40(7), pages 1059-1070, November.
    16. Sandhu, Rupinder & Irmak, Suat, 2022. "Effects of subsurface drip-irrigated soybean seeding rates on grain yield, evapotranspiration and water productivity under limited and full irrigation and rainfed conditions," Agricultural Water Management, Elsevier, vol. 267(C).
    17. Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
    18. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.
    19. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.
    20. Ireneusz Cymes & Ewa Dragańska & Zbigniew Brodziński, 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change," Agriculture, MDPI, vol. 12(6), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:8:p:1210-1220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.