IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i11p1923-1930.html
   My bibliography  Save this article

Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity

Author

Listed:
  • Ahmadi, Seyed Hamid
  • Andersen, Mathias N.
  • Plauborg, Finn
  • Poulsen, Rolf T.
  • Jensen, Christian R.
  • Sepaskhah, Ali Reza
  • Hansen, Søren

Abstract

Yield and water productivity of potatoes grown in 4.32 m2 lysimeters were measured in coarse sand, loamy sand, and sandy loam and imposed to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI after tuber bulking and lasted for 6 weeks until final harvest. Analysis across the soil textures showed that fresh yields were not significant between the irrigation treatments. However, the same analysis across the irrigation treatments revealed that the effect of soil texture was significant on the fresh yield and loamy sand produced significantly higher fresh yield than the other two soils, probably because of higher leaf area index, higher photosynthesis rates, and "stay-green" effect late in the growing season. More analysis showed that there was a significant interaction between the irrigation treatments and soil textures that the highest fresh yield was obtained under FI in loamy sand. Furthermore, analysis across the soil textures showed that water productivities, WP (kg ha-1 fresh tuber yield mm-1 ET) were not significantly different between the irrigation treatments. However, across the irrigation treatments, the soil textures were significantly different. This showed that the interaction between irrigation treatments and soil textures was significant that the highest significant WP was obtained under DI in sandy loam. While PRD and DI treatments increased WP by, respectively, 11 and 5% in coarse sand and 28 and 36% in sandy loam relative to FI, they decreased WP in loamy sand by 15 and 13%. The reduced WP in loamy sand was due to nearly 28% fresh tuber yield loss in PRD and DI relative to FI even though ET was reduced by 9 and 11% in these irrigation treatments. This study showed that different soils will affect water-saving irrigation strategies that are worth knowing for suitable agricultural water management. So, under non-limited water resources conditions, loamy sand produces the highest yield under full irrigation but water-saving irrigations (PRD and DI) are not recommended due to considerable loss (28%) in yield. However, under restricted water resources, it is recommended to apply water-saving irrigations in sandy loam and coarse sand to achieve the highest water productivity.

Suggested Citation

  • Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:11:p:1923-1930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00238-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. De la Hera, M.L. & Romero, P. & Gomez-Plaza, E. & Martinez, A., 2007. "Is partial root-zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions?," Agricultural Water Management, Elsevier, vol. 87(3), pages 261-274, February.
    3. Molden, D. & Murray-Rust, H. & Sakthivadivel, R. & Makin, I., 2003. "A water-productivity framework for understanding and action," IWMI Books, Reports H032632, International Water Management Institute.
    4. Kirda, C. & Cetin, M. & Dasgan, Y. & Topcu, S. & Kaman, H. & Ekici, B. & Derici, M. R. & Ozguven, A. I., 2004. "Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation," Agricultural Water Management, Elsevier, vol. 69(3), pages 191-201, October.
    5. Fabeiro, C. & Martin de Santa Olalla, F. & de Juan, J. A., 2001. "Yield and size of deficit irrigated potatoes," Agricultural Water Management, Elsevier, vol. 48(3), pages 255-266, June.
    6. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field-grown potatoes: Gas exchange and xylem [ABA]," Agricultural Water Management, Elsevier, vol. 97(10), pages 1486-1494, October.
    7. Ferreira, T.C. & Goncalves, D.A., 2007. "Crop-yield/water-use production functions of potatoes (Solanum tuberosum, L.) grown under differential nitrogen and irrigation treatments in a hot, dry climate," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 45-55, May.
    8. Bowen, W. T., 2003. "Water productivity and potato cultivation," IWMI Books, Reports H032645, International Water Management Institute.
    9. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    10. Darwish, T.M. & Atallah, T.W. & Hajhasan, S. & Haidar, A., 2006. "Nitrogen and water use efficiency of fertigated processing potato," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 95-104, September.
    11. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    12. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kadaja, Jüri & Saue, Triin, 2016. "Potential effects of different irrigation and drainage regimes on yield and water productivity of two potato varieties under Estonian temperate climate," Agricultural Water Management, Elsevier, vol. 165(C), pages 61-71.
    2. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    3. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2016. "Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 163(C), pages 146-158.
    4. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    5. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    6. Shahrokhnia, Mohammad Hossein & Sepaskhah, Ali Reza, 2016. "Effects of irrigation strategies, planting methods and nitrogen fertilization on yield, water and nitrogen efficiencies of safflower," Agricultural Water Management, Elsevier, vol. 172(C), pages 18-30.
    7. Shu, Liang-Zuo & Liu, Rui & Min, Wei & Wang, Yao-sheng & Hong-mei, Yu & Zhu, Peng-fei & Zhu, Ji-rong, 2020. "Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    8. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    9. Linker, Raphael & Ioslovich, Ilya & Sylaios, Georgios & Plauborg, Finn & Battilani, Adriano, 2016. "Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato," Agricultural Water Management, Elsevier, vol. 163(C), pages 236-243.
    10. Waqas, Muhammad Sohail & Cheema, Muhammad Jehanzeb Masud & Hussain, Saddam & Ullah, Muhammad Kaleem & Iqbal, Muhammad Mazhar, 2021. "Delayed irrigation: An approach to enhance crop water productivity and to investigate its effects on potato yield and growth parameters," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Paredes, Paula & D’Agostino, Daniela & Assif, Mahdi & Todorovic, Mladen & Pereira, Luis S., 2018. "Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach," Agricultural Water Management, Elsevier, vol. 195(C), pages 11-24.
    12. Ahmadi, Seyed Hamid & Plauborg, Finn & Andersen, Mathias N. & Sepaskhah, Ali Reza & Jensen, Christian R. & Hansen, Søren, 2011. "Effects of irrigation strategies and soils on field grown potatoes: Root distribution," Agricultural Water Management, Elsevier, vol. 98(8), pages 1280-1290, May.
    13. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    14. Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
    15. Elhani, Sliman & Haddadi, Maroua & Csákvári, Edina & Zantar, Said & Hamim, Ahlam & Villányi, Vanda & Douaik, Ahmed & Bánfalvi, Zsófia, 2019. "Effects of partial root-zone drying and deficit irrigation on yield, irrigation water-use efficiency and some potato (Solanum tuberosum L.) quality traits under glasshouse conditions," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    16. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Kundu, Bimal Chandra & Barman, Alak & Murad, Khandakar Faisal Ibn & Akter, Farzana, 2019. "Yield and quality of potato tuber and its water productivity are influenced by alternate furrow irrigation in a raised bed system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    17. Ma, Shou-Chen & Zhang, Wei-Qiang & Duan, Ai-Wang & Wang, Tong-Chao, 2019. "Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 221(C), pages 486-492.
    18. Zhang, Qiang & Wu, Shen & Chen, Chu & Shu, Liang-Zuo & Zhou, Xiu-Jie & Zhu, Sheng-Nan, 2014. "Regulation of nitrogen forms on growth of eggplant under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 142(C), pages 56-65.
    19. Razzaghi, Fatemeh & Plauborg, Finn & Jacobsen, Sven-Erik & Jensen, Christian Richardt & Andersen, Mathias Neumann, 2012. "Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa," Agricultural Water Management, Elsevier, vol. 109(C), pages 20-29.
    20. Muhammad Waqar Nasir & Zoltan Toth, 2021. "Response of Different Potato Genotypes to Drought Stress," Agriculture, MDPI, vol. 11(8), pages 1-13, August.
    21. Topak, Ramazan & Acar, Bilal & Uyanöz, Refik & Ceyhan, Ercan, 2016. "Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 176(C), pages 180-190.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    2. Hossain, Istiaque & Alam, Md. Mahmudul & Siwar, Chamhuri & Bin Mokhtar, Mazlin, 2019. "Measurement of Water Productivity in Seasonal Floodplain Beel Area," SocArXiv q3ayc, Center for Open Science.
    3. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    4. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    5. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    6. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    7. Fandika, Isaac R. & Kemp, Peter D. & Millner, James P. & Horne, David & Roskruge, Nick, 2016. "Irrigation and nitrogen effects on tuber yield and water use efficiency of heritage and modern potato cultivars," Agricultural Water Management, Elsevier, vol. 170(C), pages 148-157.
    8. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
    9. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    10. U. Behera & P. Panigrahi & A. Sarangi, 2012. "Multiple Water Use Protocols in Integrated Farming System for Enhancing Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2605-2623, July.
    11. Susanne Scheierling & David O. Treguer & James F. Booker, 2016. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    12. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    13. Kadaja, Jüri & Saue, Triin, 2016. "Potential effects of different irrigation and drainage regimes on yield and water productivity of two potato varieties under Estonian temperate climate," Agricultural Water Management, Elsevier, vol. 165(C), pages 61-71.
    14. Cook, Simon, 2006. "Agricultural water productivity: issues, concepts and approaches," IWMI Working Papers H039744, International Water Management Institute.
    15. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    16. Upali A. Amarasinghe & R.P. S. Malik & Bharat R. Sharma, 2010. "Overcoming growing water scarcity: Exploring potential improvements in water productivity in India," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 188-199, August.
    17. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    18. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    19. Bluemling, Bettina & Yang, Hong & Pahl-Wostl, Claudia, 2007. "Making water productivity operational--A concept of agricultural water productivity exemplified at a wheat-maize cropping pattern in the North China plain," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 11-23, July.
    20. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:11:p:1923-1930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.