IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/we083720.html
   My bibliography  Save this paper

Short and long run causality measures: theory and inference

Author

Listed:
  • Taamouti, Abderrahim
  • Dufour, Jean-Marie

Abstract

The concept of causality introduced by Wiener (1956) and Granger (1969) is defined in terms of predictability one period ahead. This concept can be generalized by considering causality at a given horizon h, and causality up to any given horizon h [Dufour and Renault (1998)]. This generalization is motivated by the fact that, in the presence of an auxiliary variable vector Z, it is possible that a variable Y does not cause variable X at horizon 1, but causes it at horizon h > 1. In this case, there is an indirect causality transmitted by Z. Another related problem consists in measuring the importance of causality between two variables. Existing causality measures have been defined only for the horizon 1 and fail to capture indirect causal effects. This paper proposes a generalization of such measures for any horizon h. We propose nonparametric and parametric measures of unidirectional and instantaneous causality at any horizon h. Parametric measures are defined in the context of autoregressive processes of unknown order and expressed in terms of impulse response coefficients. On noting that causality measures typically involve complex functions of model parameters in VAR and VARMA models, we propose a simple method to evaluate these measures which is based on the simulation of a large sample from the process of interest. We also describe asymptotically valid nonparametric confidence intervals, using a bootstrap technique. Finally, the proposed measures are applied to study causality relations at different horizons between macroeconomic, monetary and financial variables in the U.S. These results show that there is a strong effect of nonborrowed reserves on federal funds rate one month ahead, the effect of real gross domestic product on federal funds rate is economically important for the first three months, the effect of federal funds rate on gross domestic product deflator is economically weak one month ahead, and finally federal fundsrate causes the real gross domestic product until 16 months.

Suggested Citation

  • Taamouti, Abderrahim & Dufour, Jean-Marie, 2008. "Short and long run causality measures: theory and inference," UC3M Working papers. Economics we083720, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:we083720
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/2734/we083720.pdf?sequence=1
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Deirdre N. McCloskey & Stephen T. Ziliak, 1996. "The Standard Error of Regressions," Journal of Economic Literature, American Economic Association, vol. 34(1), pages 97-114, March.
    2. Ben S. Bernanke & Ilian Mihov, 1998. "Measuring Monetary Policy," The Quarterly Journal of Economics, Oxford University Press, vol. 113(3), pages 869-902.
    3. Peter N. Ireland, 2005. "The Monetary Transmission Mechanism," Boston College Working Papers in Economics 628, Boston College Department of Economics.
    4. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    5. Gourieroux,Christian & Monfort,Alain, 1997. "Time Series and Dynamic Models," Cambridge Books, Cambridge University Press, number 9780521423083, Fall.
    6. K. D. Patterson, 2007. "Bias Reduction through First-order Mean Correction, Bootstrapping and Recursive Mean Adjustment," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 23-45.
    7. Kapetanios, G. & Pagan, A. & Scott, A., 2007. "Making a match: Combining theory and evidence in policy-oriented macroeconomic modeling," Journal of Econometrics, Elsevier, vol. 136(2), pages 565-594, February.
    8. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.
    9. DUFOUR, Jean-Marie & JOUINI, Tarek, 2005. "Asymptotic Distribution of a Simple Linear Estimator for VARMA Models in Echelon Form," Cahiers de recherche 10-2005, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    10. Bernanke, Ben S & Blinder, Alan S, 1992. "The Federal Funds Rate and the Channels of Monetary Transmission," American Economic Review, American Economic Association, vol. 82(4), pages 901-921, September.
    11. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    12. Boudjellaba, Hafida & Dufour, Jean-Marie & Roy, Roch, 1994. "Simplified conditions for noncausality between vectors in multivariate ARMA models," Journal of Econometrics, Elsevier, vol. 63(1), pages 271-287, July.
    13. Jean-Marie Dufour & Eric Renault, 1998. "Short Run and Long Run Causality in Time Series: Theory," Econometrica, Econometric Society, vol. 66(5), pages 1099-1126, September.
    14. Geweke, John, 1984. "Inference and causality in economic time series models," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 19, pages 1101-1144 Elsevier.
    15. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Smooth Functions of Slope Parameters and Innovation Variances in VAR (∞) Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(2), pages 309-332, May.
    16. Boudjellaba, B. & Dufour, J.-M. & Roy, R., 1991. "Testing Causality Between Two Vextors in Multivariate Arma Models," Cahiers de recherche 9119, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    17. Francis X. Diebold & Lutz Kilian, 2001. "Measuring predictability: theory and macroeconomic applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 657-669.
    18. David A. Pierce & Larry D. Haugh, 1977. "Causality in temporal systems: characterizations and a survey," Special Studies Papers 87, Board of Governors of the Federal Reserve System (U.S.).
    19. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    20. Hsiao, Cheng, 1982. "Autoregressive modeling and causal ordering of economic variables," Journal of Economic Dynamics and Control, Elsevier, vol. 4(1), pages 243-259, November.
    21. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    22. repec:wop:ubisop:0088 is not listed on IDEAS
    23. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
    24. Paparoditis, Efstathios, 1996. "Bootstrapping Autoregressive and Moving Average Parameter Estimates of Infinite Order Vector Autoregressive Processes," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 277-296, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:finlet:v:24:y:2018:i:c:p:247-255 is not listed on IDEAS
    2. repec:eee:ecmode:v:72:y:2018:i:c:p:165-176 is not listed on IDEAS
    3. Hsiu-Hsin Ko, 2015. "On the indirect causality relation from exchange rates to fundamentals," Economics Bulletin, AccessEcon, vol. 35(3), pages 1518-1524.
    4. Majid M. Al-Sadoon, 2015. "Testing subspace Granger causality," Economics Working Papers 1495, Department of Economics and Business, Universitat Pompeu Fabra.
    5. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    6. Matilla-García, Mariano & Marín, Manuel Ruiz & Dore, Mohammed I., 2014. "A permutation entropy based test for causality: The volume–stock price relation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 280-288.
    7. Gilbert COLLETAZ & Grégory LEVIEUGE & Alexandra POPESCU, 2016. "Monetary Policy and Long-Run Risk-Taking," LEO Working Papers / DR LEO 2409, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    8. Etesami, Jalal & Habibnia, Ali & Kiyavash, Negar, 2017. "Econometric modeling of systemic risk: going beyond pairwise comparison and allowing for nonlinearity," LSE Research Online Documents on Economics 70769, London School of Economics and Political Science, LSE Library.
    9. Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2017. "A Justification of Conditional Confidence Intervals," Papers 1710.00643, arXiv.org.
    10. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    11. Taamouti, Abderrahim & Bouezmarni, Taoufik & El Ghouch, Anouar, 2014. "Nonparametric estimation and inference for conditional density based Granger causality measures," Journal of Econometrics, Elsevier, vol. 180(2), pages 251-264.
    12. Ruiz-Castillo, Javier, 2012. "From the “European Paradox” to a European Drama in citation impact," UC3M Working papers. Economics we1211, Universidad Carlos III de Madrid. Departamento de Economía.
    13. Al-Sadoon, Majid M., 2014. "Geometric and long run aspects of Granger causality," Journal of Econometrics, Elsevier, vol. 178(P3), pages 558-568.
    14. Zhang, Hui Jun & Dufour, Jean-Marie & Galbraith, John W., 2016. "Exchange rates and commodity prices: Measuring causality at multiple horizons," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 100-120.
    15. Chang, Tsangyao & Chen, Wen-Yi & Gupta, Rangan & Nguyen, Duc Khuong, 2015. "Are stock prices related to the political uncertainty index in OECD countries? Evidence from the bootstrap panel causality test," Economic Systems, Elsevier, vol. 39(2), pages 288-300.
    16. repec:cte:werepe:we1212 is not listed on IDEAS
    17. Ioana Viașu, 2015. "The long-term causality. A comparative study for some EU countries," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 3(2), pages 28-35, December.
    18. repec:eee:dyncon:v:86:y:2018:i:c:p:165-184 is not listed on IDEAS
    19. Taoufik Bouezmarni & Abderrahim Taamouti, 2014. "Nonparametric tests for conditional independence using conditional distributions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 697-719, December.
    20. Francis X. Diebold & Kamil Yilmaz, 2013. "Measuring the Dynamics of Global Business Cycle Connectedness," PIER Working Paper Archive 13-070, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    21. MAO TAKONGMO, Charles Olivier, 2016. "Government spending, GDP and exchange rate in Zero Lower Bound: measuring causality at multiple horizons," MPRA Paper 79703, University Library of Munich, Germany, revised 02 Jun 2017.
    22. Ren, Yunwen & Xiao, Zhiguo & Zhang, Xinsheng, 2013. "Two-step adaptive model selection for vector autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 349-364.
    23. Mariusz Maziarz, 2015. "A review of the Granger-causality fallacy," The Journal of Philosophical Economics, Bucharest Academy of Economic Studies, The Journal of Philosophical Economics, vol. 8(2), May.
    24. El Ghouch, Anouar & Bouezmarni, Taoufik & Taamouti, Abderrahim, 2012. "Nonparametric estimation and inference for Granger causality measures," UC3M Working papers. Economics 14150, Universidad Carlos III de Madrid. Departamento de Economía.
    25. Patrick De lamirande & Jason Stevens, 2016. "Predicting events with an unidentified time horizon," Economics Bulletin, AccessEcon, vol. 36(2), pages 729-735.

    More about this item

    Keywords

    Inflation;

    JEL classification:

    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:we083720. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://www.eco.uc3m.es/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.