IDEAS home Printed from https://ideas.repec.org/a/ier/iecrev/v43y2002i2p309-332.html
   My bibliography  Save this article

Bootstrapping Smooth Functions of Slope Parameters and Innovation Variances in VAR (∞) Models

Author

Listed:
  • Atsushi Inoue

    (North Carolina State University, U.S.A.)

  • Lutz Kilian

    (University of Michigan, U.S.A., and CEPR, U.K.)

Abstract

It is common to conduct bootstrap inference in vector autoregressive (VAR) models based on the assumption that the underlying data-generating process is of finite-lag order. This assumption is implausible in practice. We establish the asymptotic validity of the residual-based bootstrap method for smooth functions of VAR slope parameters and innovation variances under the alternative assumption that a sequence of finite-lag order VAR models is fitted to data generated by a VAR process of possibly infinite order. This class of statistics includes measures of predictability and orthogonalized impulse responses and variance decompositions. Our approach provides an alternative to the use of the asymptotic normal approximation and can be used even in the absence of closed-form solutions for the variance of the estimator. We illustrate the practical relevance of our findings for applied work, including the evaluation of macroeconomic models. Copyright Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association

Suggested Citation

  • Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Smooth Functions of Slope Parameters and Innovation Variances in VAR (∞) Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(2), pages 309-332, May.
  • Handle: RePEc:ier:iecrev:v:43:y:2002:i:2:p:309-332
    as

    Download full text from publisher

    File URL: http://openurl.ingenta.com/content?genre=article&issn=0020-6598&volume=43&spage=309
    Download Restriction: Free access to full text is restricted to Ingenta subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ier:iecrev:v:43:y:2002:i:2:p:309-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.