IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article

Short run and long run causality in time series: inference

  • Dufour, Jean-Marie
  • Pelletier, Denis
  • Renault, Eric

We propose methods for testing hypothesis of non-causality at various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S. economy. Nous proposons des méthodes pour tester des hypothèses de non-causalité à différents horizons, tel que défini dans Dufour et Renault (1998, Econometrica). Nous étudions le cas des modèles VAR en détail et nous proposons des méthodes linéaires basées sur l'estimation d'autorégressions vectorielles à différents horizons. Même si les hypothèses considérées sont non linéaires, les méthodes proposées ne requièrent que des techniques de régression linéaire de même que la théorie distributionnelle asymptotique gaussienne habituelle. Dans le cas des processus intégrés, nous proposons des méthodes de régression étendue qui ne requièrent pas de théorie asymptotique non standard. L'application du bootstrap est aussi considérée. Les méthodes sont appliquées à un modèle VAR de l'économie américaine.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(05)00058-8
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 132 (2006)
Issue (Month): 2 (June)
Pages: 337-362

as
in new window

Handle: RePEc:eee:econom:v:132:y:2006:i:2:p:337-362
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-56, July.
  2. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245 Elsevier.
  3. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
  4. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  5. Renault, Eric & Sekkat, Khalid & Szafarz, Ariane, 1998. "Testing for spurious causality in exchange rates," Journal of Empirical Finance, Elsevier, vol. 5(1), pages 47-66, January.
  6. Boudjellaba, B. & Dufour, J.M. & Roy, R., 1991. "Testing Causality Between Two Vectors in Multivariate Arma Models," Cahiers de recherche 9119, Universite de Montreal, Departement de sciences economiques.
  7. Ben S. Bernanke & Ilian Mihov, 1998. "Measuring Monetary Policy," The Quarterly Journal of Economics, Oxford University Press, vol. 113(3), pages 869-902.
  8. Dufour, Jean-Marie & Khalaf, Lynda, 2002. "Simulation based finite and large sample tests in multivariate regressions," Journal of Econometrics, Elsevier, vol. 111(2), pages 303-322, December.
  9. Park, Joon Y. & Phillips, Peter C.B., 1989. "Statistical Inference in Regressions with Integrated Processes: Part 2," Econometric Theory, Cambridge University Press, vol. 5(01), pages 95-131, April.
  10. DUFOUR, Jean-Marie, 2005. "Monte Carlo Tests with Nuisance Parameters: A General Approach to Finite-Sample Inference and Nonstandard Asymptotics," Cahiers de recherche 03-2005, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  11. Pötscher, B.M., 1991. "Effects of Model Selection on Inference," Econometric Theory, Cambridge University Press, vol. 7(02), pages 163-185, June.
  12. Choi, In, 1993. "Asymptotic Normality of the Least-Squares Estimates for Higher Order Autoregressive Integrated Processes with Some Applications," Econometric Theory, Cambridge University Press, vol. 9(02), pages 263-282, April.
  13. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-66, July.
  14. Lütkepohl, Helmut & POSKITT, D.S., 1996. "Testing for Causation Using Infinite Order Vector Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 12(01), pages 61-87, March.
  15. Wouter J. Den Haan & Andrew T. Levin, 1996. "A Practitioner's Guide to Robust Covariance Matrix Estimation," NBER Technical Working Papers 0197, National Bureau of Economic Research, Inc.
  16. Lutz Kilian, 1998. "Confidence intervals for impulse responses under departures from normality," Econometric Reviews, Taylor & Francis Journals, vol. 17(1), pages 1-29.
  17. Eiji Kurozumi & Taku Yamamoto, 2000. "Modified lag augmented vector autoregressions," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 207-231.
  18. Lutkepohl, Helmut & Saikkonen, Pentti, 1997. "Impulse response analysis in infinite order cointegrated vector autoregressive processes," Journal of Econometrics, Elsevier, vol. 81(1), pages 127-157, November.
  19. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-44, January.
  20. Dufour, J.M. & Renault, E., 1995. "Short-Run and Long-Rub Causality in Time Series: Theory," Cahiers de recherche 9538, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  21. Toda, Hiro Y & Phillips, Peter C B, 1993. "Vector Autoregressions and Causality," Econometrica, Econometric Society, vol. 61(6), pages 1367-93, November.
  22. Hiro Y. Toda & Peter C.B. Phillips, 1991. "Vector Autoregression and Causality: A Theoretical Overview and Simulation Study," Cowles Foundation Discussion Papers 1001, Cowles Foundation for Research in Economics, Yale University.
  23. Gourieroux,Christian & Monfort,Alain, 1997. "Time Series and Dynamic Models," Cambridge Books, Cambridge University Press, number 9780521423083, june. pag.
  24. repec:cup:etheor:v:9:y:1993:i:2:p:263-82 is not listed on IDEAS
  25. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
  26. Wooldridge, Jeffrey M., 1989. "A computationally simple heteroskedasticity and serial correlation robust standard error for the linear regression model," Economics Letters, Elsevier, vol. 31(3), pages 239-243, December.
  27. DUFOUR, Jean-Marie & PELLETIER, Denis & RENAULT, Éric, 2003. "Short run and long run causality in time series: Inference," Cahiers de recherche 2003-16, Universite de Montreal, Departement de sciences economiques.
  28. Yamada, Hiroshi & Toda, Hiro Y., 1998. "Inference in possibly integrated vector autoregressive models: some finite sample evidence," Journal of Econometrics, Elsevier, vol. 86(1), pages 55-95, June.
  29. Yamamoto, Taku, 1996. "A Simple Approach to the Statistical Inference in Linear Time Series Models Which May Have Some Unit Roots," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 37(2), pages 87-100, December.
  30. Dufour, Jean-Marie & Ghysels, Eric & Hall, Alastair, 1994. "Generalized Predictive Tests and Structural Change Analysis in Econometrics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(1), pages 199-229, February.
  31. Judith A. Giles, 2000. "Testing for Two-Step Granger Noncausality in Trivariate VAR Models," Econometrics Working Papers 0008, Department of Economics, University of Victoria.
  32. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-72, July.
  33. David A. Pierce & Larry D. Haugh, 1977. "Causality in temporal systems: characterizations and a survey," Special Studies Papers 87, Board of Governors of the Federal Reserve System (U.S.).
  34. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
  35. Paparoditis, Efstathios, 1996. "Bootstrapping Autoregressive and Moving Average Parameter Estimates of Infinite Order Vector Autoregressive Processes," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 277-296, May.
  36. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-38, July.
  37. Pierce, David A. & Haugh, Larry D., 1977. "Causality in temporal systems : Characterization and a survey," Journal of Econometrics, Elsevier, vol. 5(3), pages 265-293, May.
  38. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-87, October.
  39. Geweke, John, 1984. "Inference and causality in economic time series models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 19, pages 1101-1144 Elsevier.
  40. Lutkepohl, Helmut & Burda, Maike M., 1997. "Modified Wald tests under nonregular conditions," Journal of Econometrics, Elsevier, vol. 78(2), pages 315-332, June.
  41. repec:cup:etheor:v:12:y:1996:i:1:p:61-87 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:132:y:2006:i:2:p:337-362. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.