IDEAS home Printed from https://ideas.repec.org/p/eui/euiwps/eco2011-30.html
   My bibliography  Save this paper

Vector Autoregressive Models

Author

Listed:
  • Helmut Luetkepohl

Abstract

Multivariate simultaneous equations models were used extensively for macroeconometric analysis when Sims (1980) advocated vector autoregressive (VAR) models as alternatives. At that time longer and more frequently observed macroeconomic time series called for models which described the dynamic structure of the variables. VAR models lend themselves for this purpose. They typically treat all variables as a priori endogenous. Thereby they account for Sims’ critique that the exogeneity assumptions for some of the variables in simultaneous equations models are ad hoc and often not backed by fully developed theories. Restrictions, including exogeneity of some of the variables, may be imposed on VAR models based on statistical procedures. VAR models are natural tools for forecasting. Their setup is such that current values of a set of variables are partly explained by past values of the variables involved. They can also be used for economic analysis, however, because they describe the joint generation mechanism of the variables involved. Structural VAR analysis attempts to investigate structural economic hypotheses with the help of VAR models. Impulse response analysis, forecast error variance decompositions, historical decompositions and the analysis of forecast scenarios are the tools which have been proposed for disentangling the relations between the variables in a VAR model. Traditionally VAR models are designed for stationary variables without time trends. Trending behavior can be captured by including deterministic polynomial terms. In the 1980s the discovery of the importance of stochastic trends in economic variables and the development of the concept of cointegration by Granger (1981), Engle and Granger (1987), Johansen (1995) and others have shown that stochastic trends can also be captured by VAR models. If there are trends in some of the variables it may be desirable to separate the long-run relations from the short-run dynamics of the generation process of a set of variables. Vector error correction models offer a convenient framework for separating longrun and short-run components of the data generation process (DGP). In the present chapter levels VAR models are considered where cointegration relations are not modelled explicitly although they may be present. Specific issues related to trending variables will be mentioned occasionally throughout the chapter. The advantage of levels VAR models over vector error correction models is that they can also be used when the cointegration structure is unknown. Cointegration analysis and error correction models are discussed specifically in the next chapter.

Suggested Citation

  • Helmut Luetkepohl, 2011. "Vector Autoregressive Models," Economics Working Papers ECO2011/30, European University Institute.
  • Handle: RePEc:eui:euiwps:eco2011/30
    as

    Download full text from publisher

    File URL: http://cadmus.eui.eu/bitstream/handle/1814/19354/ECO_2011_30.pdf?sequence=1
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Matteo Grigoletto, 1998. "Bootstrap prediction intervals for autoregressive models fitted to non-autoregressive processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 7(3), pages 285-295, December.
    2. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    3. Kilian, Lutz & Demiroglu, Ufuk, 2000. "Residual-Based Tests for Normality in Autoregressions: Asymptotic Theory and Simulation Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 40-50, January.
    4. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    5. Toda, Hiro Y & Phillips, Peter C B, 1993. "Vector Autoregressions and Causality," Econometrica, Econometric Society, vol. 61(6), pages 1367-1393, November.
    6. Helmut Lütkepohl, 2005. "New Introduction to Multiple Time Series Analysis," Springer Books, Springer, number 978-3-540-27752-1, June.
    7. Nigar Hashimzade & Michael A. Thornton (ed.), 2013. "Handbook of Research Methods and Applications in Empirical Macroeconomics," Books, Edward Elgar Publishing, number 14327.
    8. Lutkepohl, Helmut, 2006. "Forecasting with VARMA Models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 6, pages 287-325, Elsevier.
    9. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    10. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Smooth Functions of Slope Parameters and Innovation Variances in VAR (∞) Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(2), pages 309-332, May.
    11. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    12. Johansen, Soren, 2006. "Statistical analysis of hypotheses on the cointegrating relations in the I(2) model," Journal of Econometrics, Elsevier, vol. 132(1), pages 81-115, May.
    13. Park, Joon Y. & Phillips, Peter C.B., 1989. "Statistical Inference in Regressions with Integrated Processes: Part 2," Econometric Theory, Cambridge University Press, vol. 5(1), pages 95-131, April.
    14. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    15. Elena Pesavento & Barbara Rossi, 2006. "Small‐sample confidence intervals for multivariate impulse response functions at long horizons," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1135-1155, December.
    16. Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155, December.
    17. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871.
    18. V. A. Samaranayake & David P. Hasza, 1988. "Properties Of Predictors For Multivariate Autoregressive Models With Estimated Parameters," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(4), pages 361-383, July.
    19. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    20. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    21. Christiane Baumeister & Lutz Kilian, 2011. "Real-Time Forecasts of the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 326-336, September.
    22. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    23. Lutkepohl, Helmut & Saikkonen, Pentti, 1997. "Impulse response analysis in infinite order cointegrated vector autoregressive processes," Journal of Econometrics, Elsevier, vol. 81(1), pages 127-157, November.
    24. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    25. Ingram, Beth F. & Whiteman, Charles H., 1994. "Supplanting the 'Minnesota' prior: Forecasting macroeconomic time series using real business cycle model priors," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 497-510, December.
    26. Jean-Marie Dufour & Eric Renault, 1998. "Short Run and Long Run Causality in Time Series: Theory," Econometrica, Econometric Society, vol. 66(5), pages 1099-1126, September.
    27. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    28. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    29. Boswijk, H. Peter, 2000. "Mixed Normality And Ancillarity In I(2) Systems," Econometric Theory, Cambridge University Press, vol. 16(6), pages 878-904, December.
    30. Lütkepohl, Helmut & POSKITT, D.S., 1996. "Testing for Causation Using Infinite Order Vector Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 12(1), pages 61-87, March.
    31. Hansen, Bruce E, 1997. "Approximate Asymptotic P Values for Structural-Change Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 60-67, January.
    32. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    33. Jostein Paulsen, 1984. "Order Determination Of Multivariate Autoregressive Time Series With Unit Roots," Journal of Time Series Analysis, Wiley Blackwell, vol. 5(2), pages 115-127, March.
    34. Lorenzo Pascual & Juan Romo & Esther Ruiz, 2004. "Bootstrap predictive inference for ARIMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 449-465, July.
    35. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    36. Lütkepohl, Helmut, 2008. "Problems related to over-identifying restrictions for structural vector error correction models," Economics Letters, Elsevier, vol. 99(3), pages 512-515, June.
    37. Z. Lomnicki, 1961. "Tests for departure from normality in the case of linear stochastic processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 4(1), pages 37-62, December.
    38. Granger, Clive W.J., 2001. "Overview Of Nonlinear Macroeconometric Empirical Models," Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 466-481, September.
    39. Nikolay Gospodinov, 2004. "Asymptotic confidence intervals for impulse responses of near-integrated processes," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 505-527, December.
    40. Kilian, Lutz & Chang, Pao-Li, 2000. "How accurate are confidence intervals for impulse responses in large VAR models?," Economics Letters, Elsevier, vol. 69(3), pages 299-307, December.
    41. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    42. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    43. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    44. Stock, James H., 1991. "Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series," Journal of Monetary Economics, Elsevier, vol. 28(3), pages 435-459, December.
    45. Kim, Jae H., 1999. "Asymptotic and bootstrap prediction regions for vector autoregression," International Journal of Forecasting, Elsevier, vol. 15(4), pages 393-403, October.
    46. Benkwitz, Alexander & Lütkepohl, Helmut & Wolters, Jürgen, 2001. "Comparison Of Bootstrap Confidence Intervals For Impulse Responses Of German Monetary Systems," Macroeconomic Dynamics, Cambridge University Press, vol. 5(1), pages 81-100, February.
    47. Graham Elliott, 1998. "On the Robustness of Cointegration Methods when Regressors Almost Have Unit Roots," Econometrica, Econometric Society, vol. 66(1), pages 149-158, January.
    48. Helmut Lütkepohl, 2005. "Vector Error Correction Models," Springer Books, in: New Introduction to Multiple Time Series Analysis, chapter 6, pages 237-267, Springer.
    49. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Autoregressive Processes with Possible Unit Roots," Econometrica, Econometric Society, vol. 70(1), pages 377-391, January.
    50. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    51. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    52. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    53. Masarotto, Guido, 1990. "Bootstrap prediction intervals for autoregressions," International Journal of Forecasting, Elsevier, vol. 6(2), pages 229-239, July.
    54. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    55. Wright, Jonathan H, 2000. "Confidence Intervals for Univariate Impulse Responses with a Near Unit Root," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 368-373, July.
    56. Paul Kabaila, 1993. "On Bootstrap Predictive Inference For Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(5), pages 473-484, September.
    57. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    58. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    59. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521562607.
    60. Hatanaka, Michio, 1996. "Time-Series-Based Econometrics: Unit Roots and Co-integrations," OUP Catalogue, Oxford University Press, number 9780198773535, December.
    61. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
    62. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    63. Bruggemann, Ralf & Lutkepohl, Helmut & Saikkonen, Pentti, 2006. "Residual autocorrelation testing for vector error correction models," Journal of Econometrics, Elsevier, vol. 134(2), pages 579-604, October.
    64. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, December.
    65. Park, Joon Y. & Phillips, Peter C.B., 1988. "Statistical Inference in Regressions with Integrated Processes: Part 1," Econometric Theory, Cambridge University Press, vol. 4(3), pages 468-497, December.
    66. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    67. Lutz Kilian, 2013. "Structural vector autoregressions," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 22, pages 515-554, Edward Elgar Publishing.
    68. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    69. Villani, Mattias, 2005. "Bayesian Reference Analysis Of Cointegration," Econometric Theory, Cambridge University Press, vol. 21(2), pages 326-357, April.
    70. Saikkonen, Pentti & Lütkepohl, HELMUT, 1996. "Infinite-Order Cointegrated Vector Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 12(5), pages 814-844, December.
    71. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    72. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521839198.
    73. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882.
    74. Burbidge, John & Harrison, Alan, 1985. "An historical decomposition of the great depression to determine the role of money," Journal of Monetary Economics, Elsevier, vol. 16(1), pages 45-54, July.
    75. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    76. Grigoletto, Matteo, 1998. "Bootstrap prediction intervals for autoregressions: some alternatives," International Journal of Forecasting, Elsevier, vol. 14(4), pages 447-456, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Kefei & Cao, Hua & Thé, Jesse & Yu, Hesheng, 2022. "A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms," Applied Energy, Elsevier, vol. 306(PA).
    2. Ramona Dumitriu & Razvan Stefanescu, 2015. "The Relationship Between Romanian Exports And Economic Growth After The Adhesion To European Union," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 17-26.
    3. Tomislav Globan, 2014. "Testing the 'trilemma' in post-transition Europe - a new empirical measure of capital mobility," Post-Communist Economies, Taylor & Francis Journals, vol. 26(4), pages 459-476, December.
    4. Hakkı Kutay Bolkol, 2015. "Causal Relationship between Construction Production and GDP in Turkey," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 4(3), pages 42-53, July.
    5. Kouassi YEBOUA, 2021. "Fiscal policy and growth-inequality tradeoffs: Bayesian evidence from Cote d’Ivoire," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(1(626), S), pages 297-310, Spring.
    6. Fadejeva, Ludmila & Feldkircher, Martin & Reininger, Thomas, 2017. "International spillovers from Euro area and US credit and demand shocks: A focus on emerging Europe," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 1-25.
    7. Andre Amaral & Taysir E. Dyhoum & Hussein A. Abdou & Hassan M. Aljohani, 2022. "Modeling for the Relationship between Monetary Policy and GDP in the USA Using Statistical Methods," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    8. Kim, Soyoung & Mehrotra, Aaron, 2017. "Managing price and financial stability objectives in inflation targeting economies in Asia and the Pacific," Journal of Financial Stability, Elsevier, vol. 29(C), pages 106-116.
    9. Elizabeth Bucacos, 2015. "Impact of international monetary policy in Uruguay: a FAVAR approach," Documentos de trabajo 2015003, Banco Central del Uruguay.
    10. Spodniak, Petr & Ollikka, Kimmo & Honkapuro, Samuli, 2019. "The relevance of wholesale electricity market places: the Nordic case," Papers WP631, Economic and Social Research Institute (ESRI).
    11. Dan ARMEANU & Carmen PASCAL, 2017. "The Economic and Social Impact of Minimum Wage," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(3), pages 57-72.
    12. Tomislav Globan, 2015. "Financial integration, push factors and volatility of capital flows: evidence from EU new member states," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(3), pages 643-672, August.
    13. Ludmila Fadejeva & Martin Feldkircher & Thomas Reininger, 2014. "International Transmission of Credit Shocks: Evidence from Global Vector Autoregression Model," Working Papers 2014/05, Latvijas Banka.
    14. Behrendt, Simon & Schmidt, Alexander, 2021. "Nonlinearity matters: The stock price – trading volume relation revisited," Economic Modelling, Elsevier, vol. 98(C), pages 371-385.
    15. William Gatt & Germano Ruisi, 2022. "The spillover of euro area shocks to the Maltese economy," CBM Working Papers WP/03/2022, Central Bank of Malta.
    16. Tihana Škrinjarić & Zrinka Orlović, 2020. "Economic Policy Uncertainty and Stock Market Spillovers: Case of Selected CEE Markets," Mathematics, MDPI, vol. 8(7), pages 1-33, July.
    17. Marques, André M. & Lima, Gilberto Tadeu, 2022. "Testing for Granger causality in quantiles between the wage share in income and productive capacity utilization," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 290-312.
    18. Stefanescu, Razvan & Dumitriu, Ramona, 2014. "Investigation on the relationship between Romanian foreign trade and industrial production," MPRA Paper 62547, University Library of Munich, Germany.
    19. Bampi, Rodrigo E. & Colombo, Jefferson A., 2021. "Heterogeneous effects of foreign exchange appreciation on industrial output: Evidence from disaggregated manufacturing data," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 431-451.
    20. MacDonald, Ronald & Sogiakas, Vasilios & Tsopanakis, Andreas, 2015. "An investigation of systemic stress and interdependencies within the Eurozone and Euro Area countries," Economic Modelling, Elsevier, vol. 48(C), pages 52-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helmut Luetkepohl, 2007. "Econometric Analysis with Vector Autoregressive Models," Economics Working Papers ECO2007/11, European University Institute.
    2. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871.
    3. Lütkepohl, Helmut, 1999. "Vector autoregressions," SFB 373 Discussion Papers 1999,4, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Lütkepohl, Helmut, 1999. "Vector autoregressive analysis," SFB 373 Discussion Papers 1999,31, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Inoue, Atsushi & Kilian, Lutz, 2020. "The uniform validity of impulse response inference in autoregressions," Journal of Econometrics, Elsevier, vol. 215(2), pages 450-472.
    6. DUFOUR, Jean-Marie & JOUINI, Tarek, 2005. "Finite-Sample Simulation-Based Inference in VAR Models with Applications to Order Selection and Causality Testing," Cahiers de recherche 2005-12, Universite de Montreal, Departement de sciences economiques.
    7. Dufour, Jean-Marie & Jouini, Tarek, 2006. "Finite-sample simulation-based inference in VAR models with application to Granger causality testing," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 229-254.
    8. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.
    9. repec:diw:diwwpp:dp1235 is not listed on IDEAS
    10. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    11. Helmut Lütkepohl, 2013. "Reducing confidence bands for simulated impulse responses," Statistical Papers, Springer, vol. 54(4), pages 1131-1145, November.
    12. Kilian, Lutz & Kim, Yun Jung, 2009. "Do Local Projections Solve the Bias Problem in Impulse Response Inference?," CEPR Discussion Papers 7266, C.E.P.R. Discussion Papers.
    13. Pesavento, Elena & Rossi, Barbara, 2007. "Impulse response confidence intervals for persistent data: What have we learned?," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2398-2412, July.
    14. Bauer, Dietmar & Maynard, Alex, 2012. "Persistence-robust surplus-lag Granger causality testing," Journal of Econometrics, Elsevier, vol. 169(2), pages 293-300.
    15. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, December.
    16. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    17. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    18. Lenard Lieb & Stephan Smeekes, 2017. "Inference for Impulse Responses under Model Uncertainty," Papers 1709.09583, arXiv.org, revised Oct 2019.
    19. Kim, Kun Ho, 2011. "Density forecasting through disaggregation," International Journal of Forecasting, Elsevier, vol. 27(2), pages 394-412.
    20. Heather M Anderson & Farshid Vahid, 2010. "VARs, Cointegration and Common Cycle Restrictions," Monash Econometrics and Business Statistics Working Papers 14/10, Monash University, Department of Econometrics and Business Statistics.
    21. Warne, Anders & Villani, Mattias, 2003. "Monetary policy analysis in a small open economy using Bayesian cointegrated structural VARs," Working Paper Series 296, European Central Bank.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2011/30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cécile Brière (email available below). General contact details of provider: https://edirc.repec.org/data/deiueit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.