IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Methods for inference in large multiple-equation Markov-switching models

  • Sims, Christopher A.
  • Waggoner, Daniel F.
  • Zha, Tao

Inference for multiple-equation Markov-chain models raises a number of difficulties that are unlikely to appear in smaller models. Our framework allows for many regimes in the transition matrix, without letting the number of free parameters grow as the square as the number of regimes, but also without losing a convenient form for the posterior distribution. Calculation of marginal data densities is difficult in these high-dimensional models. This paper gives methods to overcome these difficulties, and explains why existing methods are unreliable. It makes suggestions for maximizing posterior density and initiating MCMC simulations that provide robustness against the complex likelihood shape.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6VC0-4TDC0J6-1/2/bdbfe1b4242790c2b16baf9c63acb9fd
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 146 (2008)
Issue (Month): 2 (October)
Pages: 255-274

as
in new window

Handle: RePEc:eee:econom:v:146:y:2008:i:2:p:255-274
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Richard Clarida & Jordi Galí & Mark Gertler, 1997. "Monetary policy rules and macroeconomic stability: Evidence and some theory," Economics Working Papers 350, Department of Economics and Business, Universitat Pompeu Fabra, revised May 1999.
  2. Thomas Sargent & Noah Williams & Tao Zha, 2006. "The conquest of South American inflation," Working Paper 2006-20, Federal Reserve Bank of Atlanta.
  3. Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," Working Paper 96-13, Federal Reserve Bank of Atlanta.
  4. Roger E. A. Farmer & Daniel F. Waggoner & Tao Zha, 2010. "Minimal State Variable Solutions to Markov-switching Rational Expectations Models," Emory Economics 1003, Department of Economics, Emory University (Atlanta).
  5. Thomas A. Lubik & Frank Schorfheide, 2004. "Testing for Indeterminacy: An Application to U.S. Monetary Policy," American Economic Review, American Economic Association, vol. 94(1), pages 190-217, March.
  6. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  7. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
  8. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
  9. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
  10. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
  11. Frank Schorfheide, 2003. "Learning and monetary policy shifts," Working Paper 2003-23, Federal Reserve Bank of Atlanta.
  12. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
  13. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
  14. Daniel F. Waggoner & Tao Zha, 2000. "Likelihood-preserving normalization in multiple equation models," Working Paper 2000-8, Federal Reserve Bank of Atlanta.
  15. Chopin, Nicolas & Pelgrin, Florian, 2004. "Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation," Journal of Econometrics, Elsevier, vol. 123(2), pages 327-344, December.
  16. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
  17. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
  18. James D. Hamilton & Daniel F. Waggoner & Tao Zha, 2004. "Normalization in econometrics," Working Paper 2004-13, Federal Reserve Bank of Atlanta.
  19. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
  20. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
  21. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  22. Giorgio Primiceri & Alejandro Justiniano, 2006. "The Time Varying Volatility of Macroeconomic Fluctuations," 2006 Meeting Papers 353, Society for Economic Dynamics.
  23. Sylvia Kaufmann, 2008. "Dating and forecasting turning points by Bayesian clustering with dynamic structure: A suggestion with an application to Austrian data," Working Papers 144, Oesterreichische Nationalbank (Austrian Central Bank).
  24. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
  25. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
  26. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, June.
  27. Christopher A. Sims & Tao Zha, 2005. "Were There Regime Switches in U.S. Monetary Policy?," Working Papers 92, Princeton University, Department of Economics, Center for Economic Policy Studies..
  28. Scott S. L., 2002. "Bayesian Methods for Hidden Markov Models: Recursive Computing in the 21st Century," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 337-351, March.
  29. Waggoner, Daniel F. & Zha, Tao, 2003. "A Gibbs sampler for structural vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 349-366, November.
  30. Canova, Fabio & Gambetti, Luca, 2006. "Structural Changes in the US Economy: Bad Luck or Bad Policy?," CEPR Discussion Papers 5457, C.E.P.R. Discussion Papers.
  31. Robertson, John C & Tallman, Ellis W, 2001. "Improving Federal-Funds Rate Forecasts in VAR Models Used for Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 324-30, July.
  32. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  33. Christopher A. Sims & Tao Zha, 2004. "MCMC method for Markov mixture simultaneous-equation models: a note," Working Paper 2004-15, Federal Reserve Bank of Atlanta.
  34. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
  35. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, issue Q1, pages 4-18.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:146:y:2008:i:2:p:255-274. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.