IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Methods for inference in large multiple-equation Markov-switching models

  • Sims, Christopher A.
  • Waggoner, Daniel F.
  • Zha, Tao

Inference for multiple-equation Markov-chain models raises a number of difficulties that are unlikely to appear in smaller models. Our framework allows for many regimes in the transition matrix, without letting the number of free parameters grow as the square as the number of regimes, but also without losing a convenient form for the posterior distribution. Calculation of marginal data densities is difficult in these high-dimensional models. This paper gives methods to overcome these difficulties, and explains why existing methods are unreliable. It makes suggestions for maximizing posterior density and initiating MCMC simulations that provide robustness against the complex likelihood shape.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(08)00114-0
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 146 (2008)
Issue (Month): 2 (October)
Pages: 255-274

as
in new window

Handle: RePEc:eee:econom:v:146:y:2008:i:2:p:255-274
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2001. "Nominal rigidities and the dynamic effects of a shock to monetary policy," Working Paper 0107, Federal Reserve Bank of Cleveland.
  2. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, March.
  3. James D. Hamilton & Daniel F. Waggoner & Tao Zha, 2004. "Normalization in econometrics," FRB Atlanta Working Paper 2004-13, Federal Reserve Bank of Atlanta.
  4. Richard Clarida & Jordi Gali & Mark Gertler, 1998. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," NBER Working Papers 6442, National Bureau of Economic Research, Inc.
  5. An, Sungbae & Schorfheide, Frank, 2005. "Bayesian Analysis of DSGE Models," CEPR Discussion Papers 5207, C.E.P.R. Discussion Papers.
  6. Domenico Giannone & Martha Banbura & Lucrezia Reichlin, 2008. "Bayesian VARs with large panels," ULB Institutional Repository 2013/13388, ULB -- Universite Libre de Bruxelles.
  7. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
  8. Thomas Sargent & Noah Williams & Tao Zha, 2009. "The Conquest of South American Inflation," Journal of Political Economy, University of Chicago Press, vol. 117(2), pages 211-256, 04.
  9. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
  10. Thomas A. Lubik & Frank Schorfheide, 2004. "Testing for Indeterminacy: An Application to U.S. Monetary Policy," American Economic Review, American Economic Association, vol. 94(1), pages 190-217, March.
  11. Waggoner, Daniel F. & Zha, Tao, 2003. "Likelihood preserving normalization in multiple equation models," Journal of Econometrics, Elsevier, vol. 114(2), pages 329-347, June.
  12. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  13. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
  14. Waggoner, Daniel F. & Zha, Tao, 2003. "A Gibbs sampler for structural vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 349-366, November.
  15. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
  16. Chopin, Nicolas & Pelgrin, Florian, 2004. "Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation," Journal of Econometrics, Elsevier, vol. 123(2), pages 327-344, December.
  17. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, issue Q1, pages 4-18.
  18. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
  19. Scott S. L., 2002. "Bayesian Methods for Hidden Markov Models: Recursive Computing in the 21st Century," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 337-351, March.
  20. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
  21. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
  22. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
  23. Christopher A. Sims & Tao Zha, 2004. "Were there regime switches in U.S. monetary policy?," FRB Atlanta Working Paper 2004-14, Federal Reserve Bank of Atlanta.
  24. Alejandro Justiniano & Northwestern University, 2006. "The Time Varying Volatility of Macroeconomic Fluctuations," Computing in Economics and Finance 2006 219, Society for Computational Economics.
  25. Farmer, Roger E.A. & Waggoner, Daniel F. & Zha, Tao, 2011. "Minimal state variable solutions to Markov-switching rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(12), pages 2150-2166.
  26. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
  27. John C. Robertson & Ellis W. Tallman, 1999. "Improving forecasts of the federal funds rate in a policy model," FRB Atlanta Working Paper 99-3, Federal Reserve Bank of Atlanta.
  28. Sylvia Kaufmann, 2010. "Dating and forecasting turning points by Bayesian clustering with dynamic structure: a suggestion with an application to Austrian data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 309-344.
  29. Canova, Fabio & Gambetti, Luca, 2006. "Structural Changes in the US Economy: Bad Luck or Bad Policy?," CEPR Discussion Papers 5457, C.E.P.R. Discussion Papers.
  30. Frank Schorfheide, 2003. "Learning and monetary policy shifts," FRB Atlanta Working Paper 2003-23, Federal Reserve Bank of Atlanta.
  31. Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," FRB Atlanta Working Paper 96-13, Federal Reserve Bank of Atlanta.
  32. Christopher A. Sims & Tao Zha, 2004. "MCMC method for Markov mixture simultaneous-equation models: a note," FRB Atlanta Working Paper 2004-15, Federal Reserve Bank of Atlanta.
  33. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  34. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
  35. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:146:y:2008:i:2:p:255-274. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.