IDEAS home Printed from https://ideas.repec.org/p/sce/scecfa/69.html

Markov-Switching Structural Vector Autoregressions: Theory and Application

Author

Listed:
  • Juan F. Rubio-Ramirez

    (Federal Reserve Bank of Atlanta)

  • Daniel Waggoner

    (Federal Reserve Bank of Atlanta)

  • Tao Zha

    (Federal Reserve Bank of Atlanta)

Abstract

This paper develops a new and easily implementable necessary and sufficient condition for the exact identification of a Markov-switching SVAR model. The theorem applies to models with both linear and some nonlinear restrictions on the structural parameters. We also derive efficient MCMC algorithms to implement sign and long-run restrictions in Markov-switching SVARs. Using our methods, four well-known identification schemes are used to study whether monetary policy has changed in the euro area since the introduction of the European Monetary Union. We find that models restricted to only time-varying shock variances dominate other models. We find a persistent post-1993 regime that is associated with low volatility of shocks to output, prices, and interest rates. Finally, the output effects of monetary policy shocks are small and uncertain across regimes and models. These results are robust to the four identification schemes studied in this paper

Suggested Citation

  • Juan F. Rubio-Ramirez & Daniel Waggoner & Tao Zha, 2006. "Markov-Switching Structural Vector Autoregressions: Theory and Application," Computing in Economics and Finance 2006 69, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:69
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.