IDEAS home Printed from https://ideas.repec.org/p/fip/fedawp/98-22.html
   My bibliography  Save this paper

Conditional forecasts in dynamic multivariate models

Author

Listed:
  • Daniel F. Waggoner
  • Tao Zha

Abstract

In the existing literature, conditional forecasts in the vector autoregressive (VAR) framework have not been commonly presented with probability distributions or error bands. This paper develops Bayesian methods for computing such distributions or bands. It broadens the class of conditional forecasts to which the methods can be applied. The methods work for both structural and reduced-form VAR models and, in contrast to common practices, account for the parameter uncertainty in small samples. Empirical examples under the flat prior and under the reference prior of Sims and Zha (1998) are provided to show the use of these methods.

Suggested Citation

  • Daniel F. Waggoner & Tao Zha, 1998. "Conditional forecasts in dynamic multivariate models," FRB Atlanta Working Paper 98-22, Federal Reserve Bank of Atlanta.
  • Handle: RePEc:fip:fedawp:98-22
    as

    Download full text from publisher

    File URL: http://www.frbatlanta.org//filelegacydocs/wp9822.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, "undated". "Evaluating Density Forecasts," CARESS Working Papres 97-18, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
    2. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    3. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148 Elsevier.
    4. Christoffersen, Peter F & Diebold, Francis X, 1998. "Cointegration and Long-Horizon Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 450-458, October.
    5. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    6. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    7. Miller, Preston J & Roberds, William T, 1991. "The Quantitative Significance of the Lucas Critique," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 361-387, October.
    8. Francis X. Diebold, 1998. "The Past, Present, and Future of Macroeconomic Forecasting," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 175-192, Spring.
    9. Daniel F. Waggoner & Tao Zha, 1997. "Normalization, probability distribution, and impulse responses," FRB Atlanta Working Paper 97-11, Federal Reserve Bank of Atlanta.
    10. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
    11. Christopher A. Sims, 1982. "Policy Analysis with Econometric Models," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 13(1), pages 107-164.
    12. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1.
    13. Zha, Tao, 1999. "Block recursion and structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 90(2), pages 291-316, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Econometric models ; Forecasting ; Time-series analysis;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedawp:98-22. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Elaine Clokey). General contact details of provider: http://edirc.repec.org/data/frbatus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.