IDEAS home Printed from
   My bibliography  Save this paper

Small Sample Confidence Intervals for Multivariate Impulse Response Functions at Long Horizons


  • Pesavento, Elena
  • Rossi, Barbara


Existing methods for constructing confidence bands for multivariate impulse response functions depend on auxiliary assumptions on the order of integration of the variables. Thus, they may have poor coverage at long lead times when variables are highly persistent. Solutions that have been proposed in the literature may be computationally challenging. The goal of this Paper is to propose a simple method for constructing confidence bands for impulse response functions that is not pointwise and that is robust to the presence of highly persistent processes. The method uses alternative approximations based on local-to-unity asymptotic theory and allows the lead time of the impulse response function to be a fixed fraction of the sample size. These devices provide better approximations in small samples. Monte Carlo simulations show that our method tends to have better coverage properties at long horizons than existing methods. We also investigate the properties of the various methods in terms of the length of their confidence bands. Finally, we show, with empirical applications, that our method may provide different economic interpretations of the data. Applications to real GDP and to nominal versus real sources of fluctuations in exchange rates are discussed.

Suggested Citation

  • Pesavento, Elena & Rossi, Barbara, 2004. "Small Sample Confidence Intervals for Multivariate Impulse Response Functions at Long Horizons," CEPR Discussion Papers 4536, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:4536

    Download full text from publisher

    File URL:
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Richard Clarida & Jordi Gali, 1994. "Sources of real exchange rate fluctuations: how important are nominal shocks?," Proceedings, Federal Reserve Bank of Dallas, issue Apr.
    3. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    4. Elliott, Graham & Jansson, Michael, 2003. "Testing for unit roots with stationary covariates," Journal of Econometrics, Elsevier, vol. 115(1), pages 75-89, July.
    5. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    6. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    7. Ivanov Ventzislav & Kilian Lutz, 2005. "A Practitioner's Guide to Lag Order Selection For VAR Impulse Response Analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(1), pages 1-36, March.
    8. Stock, James H., 1991. "Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series," Journal of Monetary Economics, Elsevier, vol. 28(3), pages 435-459, December.
    9. Rossi, Barbara, 2005. "Confidence Intervals for Half-Life Deviations From Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 432-442, October.
    10. Kilian, Lutz, 2001. "Impulse Response Analysis in Vector Autoregressions with Unknown Lag Order," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(3), pages 161-179, April.
    11. Andrews, Donald W K, 1993. "Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models," Econometrica, Econometric Society, vol. 61(1), pages 139-165, January.
    12. Nikolay Gospodinov, 2004. "Asymptotic confidence intervals for impulse responses of near-integrated processes," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 505-527, December.
    13. Lutz Kilian, 1998. "Confidence intervals for impulse responses under departures from normality," Econometric Reviews, Taylor & Francis Journals, vol. 17(1), pages 1-29.
    14. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Pesavento, Elena & Rossi, Barbara, 2007. "Impulse response confidence intervals for persistent data: What have we learned?," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2398-2412, July.
    2. Gorodnichenko, Yuriy & Mikusheva, Anna & Ng, Serena, 2012. "Estimators For Persistent And Possibly Nonstationary Data With Classical Properties," Econometric Theory, Cambridge University Press, vol. 28(05), pages 1003-1036, October.
    3. Pesavento, Elena & Rossi, Barbara, 2005. "Do Technology Shocks Drive Hours Up Or Down? A Little Evidence From An Agnostic Procedure," Macroeconomic Dynamics, Cambridge University Press, vol. 9(04), pages 478-488, September.
    4. Alfred A. Haug & Christie Smith, 2012. "Local Linear Impulse Responses for a Small Open Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(3), pages 470-492, June.
    5. Barbara Rossi, 2007. "Expectations hypotheses tests at Long Horizons," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 554-579, November.
    6. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 665-696.
    7. Barbara Rossi & Elena Pesavento, 2004. "Do Technology Shocks Drive Hours Up or Down?," Econometric Society 2004 North American Summer Meetings 96, Econometric Society.
    8. repec:eee:macchp:v2-527 is not listed on IDEAS
    9. Ulrich Mueller & Mark W. Watson, 2013. "Measuring Uncertainty about Long-Run Prediction," NBER Working Papers 18870, National Bureau of Economic Research, Inc.
    10. Stefano Puddu, 2013. "Real Sector and Banking System: Real and Feedback Effects. A Non-Linear VAR Approach," IRENE Working Papers 13-01, IRENE Institute of Economic Research.
    11. Elena Pesavento, 2006. "Near-optimal Unit Root Test with Stationary Covariate with Better Finite Sample Size," Emory Economics 0606, Department of Economics, Emory University (Atlanta).
    12. Constantin ANGHELACHE & Ion PARTACHI & Madalina-Gabriela ANGHEL & Gyorgy BODO & Radu STOIAN, 2016. "General theoretical notions on univariate regression," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 64(11), pages 136-144, November.
    13. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, Elsevier.
    14. Kilian, Lutz & Kim, Yun Jung, 2009. "Do Local Projections Solve the Bias Problem in Impulse Response Inference?," CEPR Discussion Papers 7266, C.E.P.R. Discussion Papers.
    15. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters,in: Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164 Edward Elgar Publishing.
    16. Kascha, Christian & Mertens, Karel, 2009. "Business cycle analysis and VARMA models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.
    17. Nikolay Gospodinov & Alex Maynard & Elena Pesavento, 2011. "Sensitivity of Impulse Responses to Small Low-Frequency Comovements: Reconciling the Evidence on the Effects of Technology Shocks," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 455-467, October.
    18. Lenard Lieb & Stephan Smeekes, 2017. "Inference for Impulse Responses under Model Uncertainty," Papers 1709.09583,

    More about this item


    impulse response functions; local to unity asymptotics; persistence; VARs;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • F40 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:4536. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.