IDEAS home Printed from
   My bibliography  Save this paper

Impulse Response Confidence Intervals for Persistent Data: What Have We Learned?


  • Elena Pesavento, Barbara Rossi


This paper is a comprehensive comparison of existing methods for constructing confidence bands for univariate impulse response functions in the presence of high persistence. Monte Carlo results show that Kilian (1998a), Wright (2000), Gospodinov (2004) and Pesavento and Rossi (2005) have favorable coverage properties, although they differ in terms of robustness at various horizons, median unbiasedness, and reliability in the possible presence of a unit or mildly explosive root. On the other hand, methods like Runkle’s (1987) bootstrap, Andrews and Chen (1994), and regressions in levels or first differences (even when based on pre-tests) may not have accurate coverage properties. The paper makes recommendations as to the appropriateness of each method in empirical work.

Suggested Citation

  • Elena Pesavento, Barbara Rossi, 2006. "Impulse Response Confidence Intervals for Persistent Data: What Have We Learned?," Economics Working Papers ECO2006/19, European University Institute.
  • Handle: RePEc:eui:euiwps:eco2006/19

    Download full text from publisher

    File URL:
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Runkle, David E, 1987. "Vector Autoregressions and Reality," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 437-442, October.
    2. Runkle, David E, 1987. "Vector Autoregressions and Reality: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 454-454, October.
    3. David E. Runkle, 1987. "Vector autoregressions and reality," Staff Report 107, Federal Reserve Bank of Minneapolis.
    4. Richard A. Ashley & Randal J. Verbrugge, 2009. "To difference or not to difference: a Monte Carlo investigation of inference in vector autoregression models," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 1(3), pages 242-274.
    5. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Autoregressive Processes with Possible Unit Roots," Econometrica, Econometric Society, vol. 70(1), pages 377-391, January.
    6. Fabio Busetti & Silvia Fabiani & Andrew Harvey, 2006. "Convergence of Prices and Rates of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 863-877, December.
    7. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    8. John Y. Campbell & N. Gregory Mankiw, 1987. "Are Output Fluctuations Transitory?," The Quarterly Journal of Economics, Oxford University Press, vol. 102(4), pages 857-880.
    9. Andrews, Donald W K & Chen, Hong-Yuan, 1994. "Approximately Median-Unbiased Estimation of Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 187-204, April.
    10. Lutkepohl, Helmut, 1990. "Asymptotic Distributions of Impulse Response Functions and Forecast Error Variance Decompositions of Vector Autoregressive Models," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 116-125, February.
    11. Rossi, Barbara, 2005. "Confidence Intervals for Half-Life Deviations From Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 432-442, October.
    12. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Smooth Functions of Slope Parameters and Innovation Variances in VAR (∞) Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(2), pages 309-332, May.
    13. Nikolay Gospodinov, 2004. "Asymptotic confidence intervals for impulse responses of near-integrated processes," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 505-527, December.
    14. Wright, Jonathan H, 2000. "Confidence Intervals for Univariate Impulse Responses with a Near Unit Root," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 368-373, July.
    15. Kilian, Lutz & Chang, Pao-Li, 2000. "How accurate are confidence intervals for impulse responses in large VAR models?," Economics Letters, Elsevier, vol. 69(3), pages 299-307, December.
    16. Barbara Rossi & Elena Pesavento, 2006. "Small-sample confidence intervals for multivariate impulse response functions at long horizons," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1135-1155.
    17. Phillips, Peter C. B., 1998. "Impulse response and forecast error variance asymptotics in nonstationary VARs," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 21-56.
    18. Lopez, Claude & Murray, Christian J & Papell, David H, 2005. "State of the Art Unit Root Tests and Purchasing Power Parity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(2), pages 361-369, April.
    19. Ivanov Ventzislav & Kilian Lutz, 2005. "A Practitioner's Guide to Lag Order Selection For VAR Impulse Response Analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(1), pages 1-36, March.
    20. Lutz Kilian, 1999. "Finite-Sample Properties of Percentile and Percentile-t Bootstrap Confidence Intervals for Impulse Responses," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 652-660, November.
    21. Stock, James H., 1991. "Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series," Journal of Monetary Economics, Elsevier, vol. 28(3), pages 435-459, December.
    22. Murray, Christian J. & Papell, David H., 2002. "The purchasing power parity persistence paradigm," Journal of International Economics, Elsevier, vol. 56(1), pages 1-19, January.
    23. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(05), pages 1131-1147, October.
    24. Graham Elliott, 1998. "On the Robustness of Cointegration Methods when Regressors Almost Have Unit Roots," Econometrica, Econometric Society, vol. 66(1), pages 149-158, January.
    25. Andrews, Donald W K, 1993. "Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models," Econometrica, Econometric Society, vol. 61(1), pages 139-165, January.
    26. Lutz Kilian & Tao Zha, 2002. "Quantifying the uncertainty about the half-life of deviations from PPP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 107-125.
    27. Lutz Kilian, 1998. "Confidence intervals for impulse responses under departures from normality," Econometric Reviews, Taylor & Francis Journals, vol. 17(1), pages 1-29.
    28. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lieb, Lenard & Smeekes, Stephan, 2017. "Inference for Impulse Responses under Model Uncertainty," Research Memorandum 022, Maastricht University, Graduate School of Business and Economics (GSBE).
    2. K. Azim Ozdemir, 2015. "Interest Rate Surprises and Transmission Mechanism in Turkey: Evidence from Impulse Response Analysis," Working Papers 1504, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    3. repec:eee:macchp:v2-527 is not listed on IDEAS
    4. Neil Kellard & Denise Osborn & Jerry Coakley & Simone D. Grose & Gael M. Martin & Donald S. Poskitt, 2015. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 721-740, September.
    5. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, Elsevier.
    6. Kilian, Lutz & Kim, Yun Jung, 2009. "Do Local Projections Solve the Bias Problem in Impulse Response Inference?," CEPR Discussion Papers 7266, C.E.P.R. Discussion Papers.

    More about this item


    Local to unity asymptotics; persistence; impulse response functions;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2006/19. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Julia Valerio). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.