IDEAS home Printed from https://ideas.repec.org/p/fip/fedgif/682.html
   My bibliography  Save this paper

Exact confidence intervals for impulse responses in a Gaussian vector autoregression

Author

Listed:
  • Jonathan H. Wright

Abstract

Many techniques have been proposed for forming confidence intervals for the impulse responses in a vector autoregression. However, numerous Monte-Carlo simulations have shown that all of these methods often have coverage well below the nominal level. This paper proposes a new approach to constructing confidence intervals for impulse responses in a vector autoregression, making the additional assumption of Gaussianity. These confidence intervals are conservative in all sample sizes; by construction they have coverage that must be greater than or equal to the nominal level.

Suggested Citation

  • Jonathan H. Wright, 2000. "Exact confidence intervals for impulse responses in a Gaussian vector autoregression," International Finance Discussion Papers 682, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgif:682
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/pubs/ifdp/2000/682/default.htm
    Download Restriction: no

    File URL: http://www.federalreserve.gov/pubs/ifdp/2000/682/ifdp682.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Runkle, David E, 1987. "Vector Autoregressions and Reality," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 437-442, October.
    2. Runkle, David E, 1987. "Vector Autoregressions and Reality: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 454-454, October.
    3. David E. Runkle, 1987. "Vector autoregressions and reality," Staff Report 107, Federal Reserve Bank of Minneapolis.
    4. Bruce E. Hansen, 1999. "The Grid Bootstrap And The Autoregressive Model," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 594-607, November.
    5. Lutkepohl, Helmut, 1990. "Asymptotic Distributions of Impulse Response Functions and Forecast Error Variance Decompositions of Vector Autoregressive Models," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 116-125, February.
    6. Campbell, Bryan & Dufour, Jean-Marie, 1997. "Exact Nonparametric Tests of Orthogonality and Random Walk in the Presence of a Drift Parameter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(1), pages 151-173, February.
    7. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    8. Wright, Jonathan H, 2000. "Confidence Intervals for Univariate Impulse Responses with a Near Unit Root," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 368-373, July.
    9. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    10. Phillips, Peter C. B., 1998. "Impulse response and forecast error variance asymptotics in nonstationary VARs," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 21-56.
    11. Lutz Kilian, 1999. "Finite-Sample Properties of Percentile and Percentile-t Bootstrap Confidence Intervals for Impulse Responses," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 652-660, November.
    12. Andrews, Donald W K, 1993. "Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models," Econometrica, Econometric Society, vol. 61(1), pages 139-165, January.
    13. Lutz Kilian, 1998. "Confidence intervals for impulse responses under departures from normality," Econometric Reviews, Taylor & Francis Journals, vol. 17(1), pages 1-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    2. Ossama Mikhail & Curtis J. Eberwein & Jagdish Handa, 2003. "Can Sectoral Shifts Generate Persistent Unemployment in Real Business Cycle Models?," Macroeconomics 0311004, EconWPA.

    More about this item

    Keywords

    Vector autoregression ; Macroeconomics;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgif:682. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Franz Osorio). General contact details of provider: http://edirc.repec.org/data/frbgvus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.