IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2014-19.html
   My bibliography  Save this paper

Bias Correction of Persistence Measures in Fractionally Integrated Models

Author

Listed:
  • Simone D. Grose
  • Gael M. Martin
  • D.S. Poskitt

Abstract

This paper investigates the accuracy of bootstrap-based bias correction of persistence measures for long memory fractionally integrated processes. The bootstrap method is based on the semi-parametric sieve approach, with the dynamics in the long memory process captured by an autoregressive approximation. With a view to improving accuracy, the sieve method is also applied to data pre-filtered by a semi-parametric estimate of the long memory parameter. Both versions of the bootstrap technique are used to estimate the finite sample distributions of the sample autocorrelation coefficients and the impulse response coefficients and, in turn, to bias-adjust these statistics. The accuracy of the resultant estimators in the case of the autocorrelation coefficients is also compared with that yielded by analytical bias adjustment methods when available. The (raw) sieve technique is seen to yield a reduction in the bias of both persistence measures. The pre-filtered sieve produces a substantial further reduction in the bias of the estimated impulse response function, whilst the extra improvement yielded by pre-filtering in the case of the sample autocorrelation function is shown to depend heavily on the accuracy of the pre-filter.

Suggested Citation

  • Simone D. Grose & Gael M. Martin & D.S. Poskitt, 2014. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Monash Econometrics and Business Statistics Working Papers 19/14, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2014-19
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp19-14.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. D. Poskitt, 2007. "Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 697-725, December.
    2. Inoue, Atsushi & Kilian, Lutz, 2016. "Joint confidence sets for structural impulse responses," Journal of Econometrics, Elsevier, vol. 192(2), pages 421-432.
    3. Pesavento, Elena & Rossi, Barbara, 2007. "Impulse response confidence intervals for persistent data: What have we learned?," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2398-2412, July.
    4. Edwin Choi & Peter Hall, 2000. "Bootstrap confidence regions computed from autoregressions of arbitrary order," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 461-477.
    5. Offer Lieberman, 2001. "The Exact Bias Of The Log-Periodogram Regression Estimator," Econometric Reviews, Taylor & Francis Journals, vol. 20(3), pages 369-383.
    6. D. S. Poskitt, 2008. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
    7. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2014. "Confidence Bands for Impulse Responses: Bonferroni versus Wald," Discussion Papers of DIW Berlin 1354, DIW Berlin, German Institute for Economic Research.
    8. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 8/12, Monash University, Department of Econometrics and Business Statistics.
    2. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
    3. Richard T. Baillie & George Kapetanios & Fotis Papailias, 2017. "Inference for impulse response coefficients from multivariate fractionally integrated processes," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 60-84, March.
    4. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    5. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    6. D. S. Poskitt, 2008. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
    7. S. D. Grose & D. S. Poskitt, 2006. "The Finite-Sample Properties of Autoregressive Approximations of Fractionally-Integrated and Non-Invertible Processes," Monash Econometrics and Business Statistics Working Papers 15/06, Monash University, Department of Econometrics and Business Statistics.
    8. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    9. Arteche, Josu & Orbe, Jesus, 2009. "Using the bootstrap for finite sample confidence intervals of the log periodogram regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1940-1953, April.
    10. Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
    11. Paramsothy Silvapulle, 2001. "A Score Test For Seasonal Fractional Integration And Cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 20(1), pages 85-104.
    12. Maharaj, E.A., 1999. "A Test for the Difference Parameter of the ARFIMA Model Using the Moving Blocks Bootstrap," Monash Econometrics and Business Statistics Working Papers 11/99, Monash University, Department of Econometrics and Business Statistics.
    13. Inoue, Atsushi & Kilian, Lutz, 2020. "The uniform validity of impulse response inference in autoregressions," Journal of Econometrics, Elsevier, vol. 215(2), pages 450-472.
    14. Leïla Nouira & Mohamed Boutahar & Vêlayoudom Marimoutou, 2009. "The effect of tapering on the semiparametric estimators for nonstationary long memory processes," Statistical Papers, Springer, vol. 50(2), pages 225-248, March.
    15. Lenard Lieb & Stephan Smeekes, 2017. "Inference for Impulse Responses under Model Uncertainty," Papers 1709.09583, arXiv.org, revised Oct 2019.
    16. Martin, Gael M. & Nadarajah, K. & Poskitt, D.S., 2020. "Issues in the estimation of mis-specified models of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 215(2), pages 559-573.
    17. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2020. "Constructing joint confidence bands for impulse response functions of VAR models – A review," Econometrics and Statistics, Elsevier, vol. 13(C), pages 69-83.
    18. repec:ebl:ecbull:v:3:y:2004:i:21:p:1-16 is not listed on IDEAS
    19. Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
    20. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Persistence and Structural Breaks: The Experience of Inflation Targeting Countries and the US," Working papers 2016-11, University of Connecticut, Department of Economics.
    21. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.

    More about this item

    Keywords

    Long memory; ARFIMA; sieve bootstrap; bootstrap-based bias correction; sample autocorrelation function; impulse response function.;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2014-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.