IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Higher Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes

  • D.S. Poskitt

    ()

  • Simone D. Grose

    ()

  • Gael M. Martin

    ()

This paper investigates the accuracy of bootstrap-based inference in the case of long memory fractionally integrated processes. The re-sampling method is based on the semi-parametric sieve approach, whereby the dynamics in the process used to produce the bootstrap draws are captured by an autoregressive approximation. Application of the sieve method to data pre-filtered by a semi-parametric estimate of the long memory parameter is also explored. Higher-order improvements yielded by both forms of re-sampling are demonstrated using Edgeworth expansions for a broad class of linear statistics. The methods are then applied to the problem of estimating the sampling distribution of the sample mean under long memory, in an experimental setting. The pre-filtered version of the bootstrap is shown to avoid the distinct underestimation of the sampling variance of the mean which the raw sieve method demonstrates in finite samples, higher order accuracy of the latter notwithstanding.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp9-12.pdf
Download Restriction: no

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 9/12.

as
in new window

Length: 26 pages
Date of creation: Apr 2012
Date of revision:
Handle: RePEc:msh:ebswps:2012-9
Contact details of provider: Postal:
PO Box 11E, Monash University, Victoria 3800, Australia

Phone: +61 3 99052489
Fax: +61 3 99055474
Web page: http://business.monash.edu/econometrics-and-business-statistics
Email:


More information through EDIRC

Order Information: Web: http://business.monash.edu/econometrics-and-business-statistics Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
  2. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
  3. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2014. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 10/14, Monash University, Department of Econometrics and Business Statistics.
  4. Donald W. K. Andrews & Yixiao Sun, 2004. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Econometrica, Econometric Society, vol. 72(2), pages 569-614, 03.
  5. Hosking, Jonathan R. M., 1996. "Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series," Journal of Econometrics, Elsevier, vol. 73(1), pages 261-284, July.
  6. Offer Lieberman & Peter C. B. Phillips, 2005. "Expansions for approximate maximum likelihood estimators of the fractional difference parameter," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 367-379, December.
  7. Smith, Murray D., 1989. "On the expectation of a ratio of quadratic forms in normal variables," Journal of Multivariate Analysis, Elsevier, vol. 31(2), pages 244-257, November.
  8. Jurgen A. Doornik & Marius Ooms, 2001. "Computational Aspects of Maximum Likelihood Estimation of Autoregressive Fractionally Integrated Moving Average Models," Economics Papers 2001-W27, Economics Group, Nuffield College, University of Oxford.
  9. Magnus, J.R., 1986. "The exact moments of a ratio of quadratic forms in normal variables," Other publications TiSEM c6725407-ac3c-44fd-b6d1-5, Tilburg University, School of Economics and Management.
  10. Andrews, Donald W.K. & Lieberman, Offer, 2005. "Valid Edgeworth Expansions For The Whittle Maximum Likelihood Estimator For Stationary Long-Memory Gaussian Time Series," Econometric Theory, Cambridge University Press, vol. 21(04), pages 710-734, August.
  11. Jurgen Doornik & Marius Ooms, 2001. "Computational Aspects of Maximum Likelihood Estimation of Autoregressive Fractionally Integrated Moving Average Models," Economics Series Working Papers 2001-W27, University of Oxford, Department of Economics.
  12. repec:adr:anecst:y:1986:i:4:p:05 is not listed on IDEAS
  13. D. S. Poskitt, 2008. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non-Invertible Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, 03.
  14. Lieberman, Offer & Phillips, Peter C.B., 2004. "Expansions For The Distribution Of The Maximum Likelihood Estimator Of The Fractional Difference Parameter," Econometric Theory, Cambridge University Press, vol. 20(03), pages 464-484, June.
  15. Lieberman, Offer & Rousseau, Judith & Zucker, David M., 2001. "Valid Edgeworth Expansion For The Sample Autocorrelation Function Under Long Range Dependence," Econometric Theory, Cambridge University Press, vol. 17(01), pages 257-275, February.
  16. L. Giraitis & P.M. Robinson, 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
  17. Edwin Choi & Peter Hall, 2000. "Bootstrap confidence regions computed from autoregressions of arbitrary order," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 461-477.
  18. Faÿ, Gilles & Moulines, Eric & Soulier, Philippe, 2004. "Edgeworth expansions for linear statistics of possibly long-range-dependent linear processes," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 275-288, February.
  19. Poskitt, D.S., 1994. "A Note on Autoregressive Modeling," Econometric Theory, Cambridge University Press, vol. 10(05), pages 884-899, December.
  20. Faÿ, Gilles, 2010. "Moment bounds for non-linear functionals of the periodogram," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 983-1009, June.
  21. D. Poskitt, 2007. "Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 697-725, December.
  22. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  23. S. D. Grose & D. S. Poskitt, 2006. "The Finite-Sample Properties of Autoregressive Approximations of Fractionally-Integrated and Non-Invertible Processes," Monash Econometrics and Business Statistics Working Papers 15/06, Monash University, Department of Econometrics and Business Statistics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2012-9. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.