IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1378.html
   My bibliography  Save this paper

Higher-order Improvements of the Parametric Bootstrap for Long-memory Gaussian Processes

Author

Listed:

Abstract

This paper determines coverage probability errors of both delta method and parametric bootstrap confidence intervals (CIs) for the covariance parameters of stationary long-memory Gaussian time series. CIs for the long-memory parameter d_0 are included. The results establish that the bootstrap provides higher-order improvements over the delta method. Analogous results are given for tests. The CIs and tests are based on one or other of two approximate maximum likelihood estimators. The first estimator solves the first-order conditions with respect to the covariance parameters of a "plug-in" log-likelihood function that has the unknown mean replaced by the sample mean. The second estimator does likewise for a plug-in Whittle log-likelihood. The magnitudes of the coverage probability errors for one-sided bootstrap CIs for covariance parameters for long-memory time series are shown to be essentially the same as they are with iid data. This occurs even though the mean of the time series cannot be estimated at the usual n^{1/2} rate.

Suggested Citation

  • Donald W.K. Andrews & Offer Lieberman, 2002. "Higher-order Improvements of the Parametric Bootstrap for Long-memory Gaussian Processes," Cowles Foundation Discussion Papers 1378, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1378
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d13/d1378.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diebold, Francis X & Husted, Steven & Rush, Mark, 1991. "Real Exchange Rates under the Gold Standard," Journal of Political Economy, University of Chicago Press, vol. 99(6), pages 1252-1271, December.
    2. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    3. Baillie, Richard T & Bollerslev, Tim, 1994. "The long memory of the forward premium," Journal of International Money and Finance, Elsevier, vol. 13(5), pages 565-571, October.
    4. Diebold, Francis X & Rudebusch, Glenn D, 1991. "Is Consumption Too Smooth? Long Memory and the Deaton Paradox," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 1-9, February.
    5. Taniguchi, Masanobu, 1986. "Third order asymptotic properties of maximum likelihood estimators for Gaussian ARMA processes," Journal of Multivariate Analysis, Elsevier, vol. 18(1), pages 1-31, February.
    6. Cheung, Yin-Wong & Diebold, Francis X., 1994. "On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean," Journal of Econometrics, Elsevier, vol. 62(2), pages 301-316, June.
    7. Cheung, Yin-Wong, 1993. "Long Memory in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 93-101, January.
    8. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
    9. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    10. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    11. Crato, Nuno & Rothman, Philip, 1994. "Fractional integration analysis of long-run behavior for US macroeconomic time series," Economics Letters, Elsevier, vol. 45(3), pages 287-291.
    12. Lieberman, Offer & Phillips, Peter C.B., 2004. "Expansions For The Distribution Of The Maximum Likelihood Estimator Of The Fractional Difference Parameter," Econometric Theory, Cambridge University Press, vol. 20(03), pages 464-484, June.
    13. Andrews, Donald W.K. & Lieberman, Offer, 2005. "Valid Edgeworth Expansions For The Whittle Maximum Likelihood Estimator For Stationary Long-Memory Gaussian Time Series," Econometric Theory, Cambridge University Press, vol. 21(04), pages 710-734, August.
    14. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(03), pages 361-376, June.
    15. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arteche, Josu & Orbe, Jesus, 2009. "Using the bootstrap for finite sample confidence intervals of the log periodogram regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1940-1953, April.
    2. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    3. Fallahi, Firouz & Karimi, Mohammad & Voia, Marcel-Cristian, 2016. "Persistence in world energy consumption: Evidence from subsampling confidence intervals," Energy Economics, Elsevier, vol. 57(C), pages 175-183.
    4. Johansen, Søren & Nielsen, Morten Ørregaard, 2016. "The Role Of Initial Values In Conditional Sum-Of-Squares Estimation Of Nonstationary Fractional Time Series Models," Econometric Theory, Cambridge University Press, vol. 32(05), pages 1095-1139, October.
    5. Søren Johansen & Morten Ørregaard Nielsen, 2012. "The role of initial values in nonstationary fractional time series models," CREATES Research Papers 2012-47, Department of Economics and Business Economics, Aarhus University.
    6. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
    7. Arteche, J. & Orbe, J., 2005. "Bootstrapping the log-periodogram regression," Economics Letters, Elsevier, vol. 86(1), pages 79-85, January.
    8. George Kapetanios & Fotis Papailias, 2011. "Block Bootstrap and Long Memory," Working Papers 679, Queen Mary University of London, School of Economics and Finance.
    9. Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
    10. Kim, Young Min & Nordman, Daniel J., 2013. "A frequency domain bootstrap for Whittle estimation under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 405-420.
    11. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    12. Beran, Jan & Shumeyko, Yevgen, 2012. "Bootstrap testing for discontinuities under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 322-347.
    13. Franco, G.C. & Reisen, V.A. & Alves, F.A., 2013. "Bootstrap tests for fractional integration and cointegration: A comparison study," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 87(C), pages 19-29.
    14. Firouz Fallahi & Mohammad Karimi & Marcel-Cristian Voia, 2014. "Are Shocks to Energy Consumption Persistent? Evidence from Subsampling Confidence Intervals," Carleton Economic Papers 14-02, Carleton University, Department of Economics.

    More about this item

    Keywords

    Asymptotics; confidence intervals; delta method; Edgeworth expansion; Gaussian process; long memory; maximum likelihood estimator; parametric bootstrap; t statistic; Whittle likelihood;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1378. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.