IDEAS home Printed from
   My bibliography  Save this article

The Role Of Initial Values In Conditional Sum-Of-Squares Estimation Of Nonstationary Fractional Time Series Models


  • Johansen, Søren
  • Nielsen, Morten Ørregaard


In this paper we analyze the influence of observed and unobserved initial values on the bias of the conditional maximum likelihood or conditional sum-of-squares (CSS, or least squares) estimator of the fractional parameter, d, in a nonstationary fractional time series model. The CSS estimator is popular in empirical work due, at least in part, to its simplicity and its feasibility, even in very complicated nonstationary models.We consider a process, X_t, for which data exist from some point in time, which we call -N_0+1, but we only start observing it at a later time, t=1. The parameter (d,?,?²) is estimated by CSS based on the model ?_0^d (X_t-?)=?_t, t=N+1,…,N+T, conditional on X_1,…,X_N. We derive an expression for the second-order bias of d as a function of the initial values, X_t, t=-N_0+1,…,N, and we investigate the effect on the bias of setting aside the first N observations as initial values. We compare d with an estimator, d_c, derived similarly but by choosing ?=C. We find, both theoretically and using a data set on voting behavior, that in many cases, the estimation of the parameter ? picks up the effect of the initial values even for the choice N=0.If N_0=0, we show that the second-order bias can be completely eliminated by a simple bias correction. If, on the other hand, N_0>0, it can only be partly eliminated because the second-order bias term due to the initial values can only be diminished by increasing N.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Johansen, Søren & Nielsen, Morten Ørregaard, 2016. "The Role Of Initial Values In Conditional Sum-Of-Squares Estimation Of Nonstationary Fractional Time Series Models," Econometric Theory, Cambridge University Press, vol. 32(05), pages 1095-1139, October.
  • Handle: RePEc:cup:etheor:v:32:y:2016:i:05:p:1095-1139_00

    Download full text from publisher

    File URL:
    File Function: link to article abstract page
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    3. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    4. Juan J. Dolado & Jesus Gonzalo & Laura Mayoral, 2002. "A Fractional Dickey-Fuller Test for Unit Roots," Econometrica, Econometric Society, vol. 70(5), pages 1963-2006, September.
    5. David Byers & James Davidson & David Peel, 1997. "Modelling Political Popularity: an Analysis of Long‐range Dependence in Opinion Poll Series," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 471-490, September.
    6. Morten Ørregaard Nielsen, 2015. "Asymptotics for the Conditional-Sum-of-Squares Estimator in Multivariate Fractional Time-Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 154-188, March.
    7. Rolf Tschernig & Enzo Weber & Roland Weigand, 2013. "Long-Run Identification in a Fractionally Integrated System," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 438-450, October.
    8. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(03), pages 651-676, June.
    9. Eduardo Rossi & Paolo Santucci de Magistris, 2013. "A No‐Arbitrage Fractional Cointegration Model for Futures and Spot Daily Ranges," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(1), pages 77-102, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Søren Johansen & Morten Ørregaard Nielsen, 2018. "Testing the CVAR in the Fractional CVAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 836-849, November.
    2. Gagnon, Marie-Hélène & Power, Gabriel J. & Toupin, Dominique, 2016. "International stock market cointegration under the risk-neutral measure," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 243-255.
    3. Chevillon, Guillaume & Hecq, Alain & Laurent, Sébastien, 2018. "Generating univariate fractional integration within a large VAR(1)," Journal of Econometrics, Elsevier, vol. 204(1), pages 54-65.
    4. repec:wly:jfutmk:v:38:y:2018:i:2:p:219-242 is not listed on IDEAS
    5. Yaya, OlaOluwa S & Ogbonna, Ephraim A & Olubusoye, Olusanya E, 2018. "How Persistent and Dependent are Pricing of Bitcoin to other Cryptocurrencies Before and After 2017/18 Crash?," MPRA Paper 91253, University Library of Munich, Germany.
    6. Sepideh Dolatabadi & Paresh Kumar Narayan & Morten Ørregaard Nielsen & Ke Xu, 2018. "Economic significance of commodity return forecasts from the fractionally cointegrated VAR model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 219-242, February.
    7. Morten Ørregaard Nielsen & Sergei S. Shibaev, 2015. "Forecasting daily political opinion polls using the fractionally cointegrated VAR model," Working Paper 1340, Economics Department, Queen's University.
    8. Søren Johansen & Morten Ørregaard Nielsen, 2019. "Nonstationary Cointegration in the Fractionally Cointegrated VAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 519-543, July.
    9. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    10. Yaya, OlaOluwa S & Gil-Alana, Luis A., 2018. "High and Low Intraday Commodity Prices: A Fractional Integration and Cointegration Approach," MPRA Paper 90518, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:32:y:2016:i:05:p:1095-1139_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.