IDEAS home Printed from https://ideas.repec.org/p/aah/create/2014-22.html
   My bibliography  Save this paper

Bootstrap Score Tests for Fractional Integration in Heteroskedastic ARFIMA Models, with an Application to Price Dynamics in Commodity Spot and Futures Markets

Author

Listed:
  • Giuseppe Cavaliere

    () (University of Bologna)

  • Morten Ørregaard Nielsen

    () (Queen?s University and CREATES)

  • A.M. Robert Taylor

    () (University of Essex)

Abstract

Empirical evidence from time series methods which assume the usual I(0)/I(1) paradigm suggests that the efficient market hypothesis, stating that spot and futures prices of a commodity should cointegrate with a unit slope on futures prices, does not hold. However, these statistical methods are known to be unreliable if the data are fractionally integrated. Moreover, spot and futures price data tend to display clear patterns of time-varying volatility which also has the potential to invalidate the use of these methods. Using new tests constructed within a more general heteroskedastic fractionally integrated model we are able to find a body of evidence in support of the efficient market hypothesis for a number of commodities. Our new tests are wild bootstrap implementations of score-based tests for the order of integration of a fractionally integrated time series. These tests are designed to be robust to both conditional and unconditional heteroskedasticity of a quite general and unknown form in the shocks. We show that the asymptotic tests do not admit pivotal asymptotic null distributions in the presence of heteroskedasticity, but that the corresponding tests based on the wild bootstrap principle do. A Monte Carlo simulation study demonstrates that very significant improvements infinite sample behaviour can be obtained by the bootstrap vis-à-vis the corresponding asymptotic tests in both heteroskedastic and homoskedastic environments.

Suggested Citation

  • Giuseppe Cavaliere & Morten Ørregaard Nielsen & A.M. Robert Taylor, 2014. "Bootstrap Score Tests for Fractional Integration in Heteroskedastic ARFIMA Models, with an Application to Price Dynamics in Commodity Spot and Futures Markets," CREATES Research Papers 2014-22, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2014-22
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/creates/rp/14/rp14_22.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Marianne Sensier & Dick van Dijk, 2004. "Testing for Volatility Changes in U.S. Macroeconomic Time Series," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 833-839, August.
    3. Baillie, Richard T & Bollerslev, Tim, 1994. "The long memory of the forward premium," Journal of International Money and Finance, Elsevier, vol. 13(5), pages 565-571, October.
    4. Morten Ørregaard Nielsen, 2015. "Asymptotics for the Conditional-Sum-of-Squares Estimator in Multivariate Fractional Time-Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 154-188, March.
    5. Paparoditis, Efstathios & Politis, Dimitris N., 2005. "Bootstrap hypothesis testing in regression models," Statistics & Probability Letters, Elsevier, vol. 74(4), pages 356-365, October.
    6. Nielsen, Morten rregaard, 2004. "Efficient Likelihood Inference In Nonstationary Univariate Models," Econometric Theory, Cambridge University Press, vol. 20(01), pages 116-146, February.
    7. Cheng, Xu & Phillips, Peter C.B., 2012. "Cointegrating rank selection in models with time-varying variance," Journal of Econometrics, Elsevier, vol. 169(2), pages 155-165.
    8. Giuseppe Cavaliere & Anders Rahbek & A. M. Robert Taylor, 2014. "Bootstrap Determination of the Co-Integration Rank in Heteroskedastic VAR Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 606-650, August.
    9. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    10. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2017. "Quasi-maximum likelihood estimation and bootstrap inference in fractional time series models with heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 198(1), pages 165-188.
    11. Breitung, Jorg & Hassler, Uwe, 2002. "Inference on the cointegration rank in fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 110(2), pages 167-185, October.
    12. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    13. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    14. Figuerola-Ferretti, Isabel & Gonzalo, Jesús, 2010. "Modelling and measuring price discovery in commodity markets," Journal of Econometrics, Elsevier, vol. 158(1), pages 95-107, September.
    15. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    16. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    17. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2009. "Heteroskedastic Time Series With A Unit Root," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1228-1276, October.
    18. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-1167, July.
    19. Joakim Westerlund & Paresh Narayan, 2013. "Testing the Efficient Market Hypothesis in Conditionally Heteroskedastic Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(11), pages 1024-1045, November.
    20. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    21. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    22. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2007. "Testing for unit roots in time series models with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 140(2), pages 919-947, October.
    23. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    24. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    25. Giuseppe Cavaliere, 2005. "Unit Root Tests under Time-Varying Variances," Econometric Reviews, Taylor & Francis Journals, vol. 23(3), pages 259-292.
    26. Ling S., 2003. "Adaptive Estimators and Tests of Stationary and Nonstationary Short- and Long-Memory ARFIMA-GARCH Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 955-967, January.
    27. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
    28. Donald W. K. Andrews & Moshe Buchinsky, 2000. "A Three-Step Method for Choosing the Number of Bootstrap Repetitions," Econometrica, Econometric Society, vol. 68(1), pages 23-52, January.
    29. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    30. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    31. Luo, Guo Ying, 1998. "Market Efficiency and Natural Selection in a Commodity Futures Market," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 647-674.
    32. Hansen, Bruce E, 1995. "Regression with Nonstationary Volatility," Econometrica, Econometric Society, vol. 63(5), pages 1113-1132, September.
    33. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    34. Alex Maynard & Peter C. B. Phillips, 2001. "Rethinking an old empirical puzzle: econometric evidence on the forward discount anomaly," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 671-708.
    35. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    36. Baillie, Richard T. & Bollerslev, Tim, 2000. "The forward premium anomaly is not as bad as you think," Journal of International Money and Finance, Elsevier, vol. 19(4), pages 471-488, August.
    37. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    38. Giuseppe Cavaliere & A. M. Robert Taylor, 2008. "Time-Transformed Unit Root Tests for Models with Non-Stationary Volatility," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 300-330, March.
    39. Juan J. Dolado & Jesus Gonzalo & Laura Mayoral, 2002. "A Fractional Dickey-Fuller Test for Unit Roots," Econometrica, Econometric Society, vol. 70(5), pages 1963-2006, September.
    40. Hassler, Uwe & Rodrigues, Paulo M.M. & Rubia, Antonio, 2009. "Testing For General Fractional Integration In The Time Domain," Econometric Theory, Cambridge University Press, vol. 25(06), pages 1793-1828, December.
    41. Ignacio N Lobato & Carlos Velasco, 2007. "Efficient Wald Tests for Fractional Unit Roots," Econometrica, Econometric Society, vol. 75(2), pages 575-589, March.
    42. Demetrescu, Matei & Kuzin, Vladimir & Hassler, Uwe, 2008. "Long Memory Testing In The Time Domain," Econometric Theory, Cambridge University Press, vol. 24(01), pages 176-215, February.
    43. Ke-Li Xu, 2008. "Bootstrapping Autoregression under Non-stationary Volatility," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 1-26, March.
    44. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
    45. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2005. "Stationarity Tests Under Time-Varying Second Moments," Econometric Theory, Cambridge University Press, vol. 21(06), pages 1112-1129, December.
    46. Peter C. B. Phillips & Ke-Li Xu, 2006. "Inference in Autoregression under Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 289-308, March.
    47. Kew, Hsein & Harris, David, 2009. "Heteroskedasticity-Robust Testing For A Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 25(06), pages 1734-1753, December.
    48. Ignacio N. Lobato & Carlos Velasco, 2006. "Optimal Fractional Dickey-Fuller tests," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 492-510, November.
    49. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2008. "Bootstrap Unit Root Tests For Time Series With Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 24(01), pages 43-71, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2017. "Quasi-maximum likelihood estimation and bootstrap inference in fractional time series models with heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 198(1), pages 165-188.
    2. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    3. Chang, Chia-Lin & McAleer, Michael, 2015. "Econometric analysis of financial derivatives: An overview," Journal of Econometrics, Elsevier, vol. 187(2), pages 403-407.
    4. Chang, C-L. & McAleer, M.J., 2014. "Econometric Analysis of Financial Derivatives," Econometric Institute Research Papers EI 2015-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Demetrescu, Matei & Sibbertsen, Philipp, 2016. "Inference on the long-memory properties of time series with non-stationary volatility," Economics Letters, Elsevier, vol. 144(C), pages 80-84.

    More about this item

    Keywords

    Bootstrap; efficient market hypothesis; fractional integration; score tests; spot and futures commodity prices; time-varying volatility;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2014-22. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.