IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v38y2016ipbp623-639.html
   My bibliography  Save this article

A fractionally cointegrated VAR model with deterministic trends and application to commodity futures markets

Author

Listed:
  • Dolatabadi, Sepideh
  • Nielsen, Morten Ørregaard
  • Xu, Ke

Abstract

We apply the fractionally cointegrated vector autoregressive (FCVAR) model to analyze the relationship between spot and futures prices in five commodity markets (aluminium, copper, lead, nickel, and zinc). To this end, we first extend the FCVAR model to accommodate deterministic trends in the levels of the processes. The methodological contribution is to provide a representation theory for the FCVAR model with deterministic trends, where we show that the presence of the deterministic trend in the process induces both restricted and unrestricted constant terms in the vector error correction model. The consequences for the cointegration rank test are also briefly discussed. In our empirical application we use the data from Figuerola-Ferretti and Gonzalo (2010), who conduct a similar analysis using the usual (non-fractional) cointegrated VAR model. The main conclusion from the empirical analysis is that, when using the FCVAR model, there is more support for the cointegration vector (1,−1)' in the long-run equilibrium relationship between spot and futures prices, and hence less evidence of long-run backwardation, compared to the results from the non-fractional model. Specifically, we reject the hypothesis that the cointegration vector is (1,−1)' using standard likelihood ratio tests only for the lead and nickel markets.

Suggested Citation

  • Dolatabadi, Sepideh & Nielsen, Morten Ørregaard & Xu, Ke, 2016. "A fractionally cointegrated VAR model with deterministic trends and application to commodity futures markets," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 623-639.
  • Handle: RePEc:eee:empfin:v:38:y:2016:i:pb:p:623-639
    DOI: 10.1016/j.jempfin.2015.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539815001218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2015.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Baillie, Richard T & Bollerslev, Tim, 1994. "The long memory of the forward premium," Journal of International Money and Finance, Elsevier, vol. 13(5), pages 565-571, October.
    3. Kellard, Neil & Sarantis, Nicholas, 2008. "Can exchange rate volatility explain persistence in the forward premium?," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 714-728, September.
    4. Bryan R. Routledge & Duane J. Seppi & Chester S. Spatt, 2000. "Equilibrium Forward Curves for Commodities," Journal of Finance, American Finance Association, vol. 55(3), pages 1297-1338, June.
    5. Johansen, Søren & Nielsen, Morten Ørregaard, 2016. "The Role Of Initial Values In Conditional Sum-Of-Squares Estimation Of Nonstationary Fractional Time Series Models," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1095-1139, October.
    6. Figuerola-Ferretti, Isabel & Gonzalo, Jesús, 2010. "Modelling and measuring price discovery in commodity markets," Journal of Econometrics, Elsevier, vol. 158(1), pages 95-107, September.
    7. Joakim Westerlund & Paresh Narayan, 2013. "Testing the Efficient Market Hypothesis in Conditionally Heteroskedastic Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(11), pages 1024-1045, November.
    8. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    9. Donald Lien & Yiu Kuen Tse, 1999. "Fractional cointegration and futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(4), pages 457-474, June.
    10. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    11. repec:bla:jecsur:v:14:y:2000:i:2:p:215-53 is not listed on IDEAS
    12. Andreas Noack Jensen & Morten Ørregaard Nielsen, 2014. "A Fast Fractional Difference Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 428-436, August.
    13. Jerry Coakley & Jian Dollery & Neil Kellard, 2011. "Long memory and structural breaks in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(11), pages 1076-1113, November.
    14. Nicholas Kaldor, 1939. "Speculation and Economic Stability," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 7(1), pages 1-27.
    15. Federico Carlini & Paolo Santucci de Magistris, 2019. "On the Identification of Fractionally Cointegrated VAR Models With the Condition," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 134-146, January.
    16. Ying‐Foon Chow & Michael McAleer & John Sequeira, 2000. "Pricing of Forward and Futures Contracts," Journal of Economic Surveys, Wiley Blackwell, vol. 14(2), pages 215-253, April.
    17. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    18. Alex Maynard & Peter C. B. Phillips, 2001. "Rethinking an old empirical puzzle: econometric evidence on the forward discount anomaly," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 671-708.
    19. Abdur R. Chowdhury, 1991. "Futures market efficiency: Evidence from cointegration tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(5), pages 577-589, October.
    20. James G. MacKinnon & Morten Ørregaard Nielsen, 2014. "Numerical Distribution Functions Of Fractional Unit Root And Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 161-171, January.
    21. Garbade, Kenneth D & Silber, William L, 1983. "Price Movements and Price Discovery in Futures and Cash Markets," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 289-297, May.
    22. Neil Kellard & Paul Newbold & Tony Rayner & Christine Ennew, 1999. "The relative efficiency of commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(4), pages 413-432, June.
    23. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    24. Brenner, Robin J. & Kroner, Kenneth F., 1995. "Arbitrage, Cointegration, and Testing the Unbiasedness Hypothesis in Financial Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(1), pages 23-42, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sepideh Dolatabadi & Morten Ørregaard Nielsen & Ke Xu, 2015. "A Fractionally Cointegrated VAR Analysis of Price Discovery in Commodity Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(4), pages 339-356, April.
    2. Sepideh Dolatabadi & Paresh Kumar Narayan & Morten Ørregaard Nielsen & Ke Xu, 2018. "Economic significance of commodity return forecasts from the fractionally cointegrated VAR model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 219-242, February.
    3. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    4. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    5. Jerry Coakley & Jian Dollery & Neil Kellard, 2011. "Long memory and structural breaks in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(11), pages 1076-1113, November.
    6. Søren Johansen & Morten Ørregaard Nielsen, 2019. "Nonstationary Cointegration in the Fractionally Cointegrated VAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 519-543, July.
    7. Søren Johansen & Morten Ørregaard Nielsen, 2018. "Testing the CVAR in the Fractional CVAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 836-849, November.
    8. Alexander Boca Saravia & Gabriel Rodríguez, 2022. "Presidential approval in Peru: an empirical analysis using a fractionally cointegrated VAR," Economic Change and Restructuring, Springer, vol. 55(3), pages 1973-2010, August.
    9. Yan, Meng & Chen, Jian & Song, Victor & Xu, Ke, 2022. "Trade friction and price discovery in the USD–CAD spot and forward markets," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    10. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    11. Bravo Caro, José Manuel & Golpe, Antonio A. & Iglesias, Jesús & Vides, José Carlos, 2020. "A new way of measuring the WTI – Brent spread. Globalization, shock persistence and common trends," Energy Economics, Elsevier, vol. 85(C).
    12. Stoupos, Nikolaos & Kiohos, Apostolos, 2022. "Euro area stock markets integration: Empirical evidence after the end of 2010 debt crisis," Finance Research Letters, Elsevier, vol. 46(PB).
    13. Guglielmo Maria Caporale & Davide Ciferri & Alessandro Girardi, 2014. "Time-Varying Spot and Futures Oil Price Dynamics," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(1), pages 78-97, February.
    14. Filippo Beltrami & Fulvio Fontini & Monica Giulietti & Luigi Grossi, 2022. "The Zonal and Seasonal CO2 Marginal Emissions Factors for the Italian Power Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 381-411, October.
    15. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," Discussion Papers 19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    16. Figuerola-Ferretti, Isabel & Gonzalo, Jesús, 2010. "Modelling and measuring price discovery in commodity markets," Journal of Econometrics, Elsevier, vol. 158(1), pages 95-107, September.
    17. Morten Ørregaard Nielsen & Sergei S. Shibaev, 2015. "Forecasting daily political opinion polls using the fractionally cointegrated VAR model," Working Paper 1340, Economics Department, Queen's University.
    18. Stoupos, Nikolaos & Kiohos, Apostolos, 2021. "Energy commodities and advanced stock markets: A post-crisis approach," Resources Policy, Elsevier, vol. 70(C).
    19. Maggie E. C. Jones & Morten Ørregaard Nielsen & Michał Ksawery Popiel, 2014. "A fractionally cointegrated VAR analysis of economic voting and political support," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(4), pages 1078-1130, November.
    20. Eduardo Rossi & Paolo Santucci de Magistris, 2009. "A No Arbitrage Fractional Cointegration Analysis Of The Range Based Volatility," CREATES Research Papers 2009-31, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    Backwardation; Contango; Deterministic trend; Fractional cointegration; Futures markets; Vector error correction model;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:38:y:2016:i:pb:p:623-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.