IDEAS home Printed from https://ideas.repec.org/p/aah/create/2010-59.html
   My bibliography  Save this paper

Numerical distribution functions of fractional unit root and cointegration tests

Author

Listed:
  • James G. MacKinnon

    (Queen's University)

  • Morten Ørregaard Nielsen

    (Queen?s University and CREATES)

Abstract

We calculate numerically the asymptotic distribution functions of likelihood ratio tests for fractional unit roots and cointegration rank. Because these distributions depend on a real-valued parameter, b, which must be estimated, simple tabulation is not feasible. Partly due to the presence of this parameter, the choice of model specification for the response surface regressions used to obtain the numerical distribution functions is more involved than is usually the case. We deal with model uncertainty by model averaging rather than by model selection. We make available a computer program which, given the dimension of the problem, q, and a value of b, provides either a set of critical values or the asymptotic P value for any value of the likelihood ratio statistic. The use of this program is illustrated by means of an empirical example involving opinion poll data.

Suggested Citation

  • James G. MacKinnon & Morten Ørregaard Nielsen, 2010. "Numerical distribution functions of fractional unit root and cointegration tests," CREATES Research Papers 2010-59, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2010-59
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/10/rp10_59.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. MacKinnon, James G & Haug, Alfred A & Michelis, Leo, 1999. "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 563-577, Sept.-Oct.
    3. Box-Steffensmeier, Janet M. & Smith, Renée M., 1996. "The Dynamics of Aggregate Partisanship," American Political Science Review, Cambridge University Press, vol. 90(3), pages 567-580, September.
    4. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    5. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    6. Joon Y. Park, 2003. "Bootstrap Unit Root Tests," Econometrica, Econometric Society, vol. 71(6), pages 1845-1895, November.
    7. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    8. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    9. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    10. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Boca Saravia & Gabriel Rodríguez, 2022. "Presidential approval in Peru: an empirical analysis using a fractionally cointegrated VAR," Economic Change and Restructuring, Springer, vol. 55(3), pages 1973-2010, August.
    2. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," Discussion Papers 19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    3. Mylonidis, Nikolaos & Kollias, Christos, 2010. "Dynamic European stock market convergence: Evidence from rolling cointegration analysis in the first euro-decade," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2056-2064, September.
    4. Galán-Gutiérrez, Juan Antonio & Martín-García, Rodrigo, 2021. "Cointegration between the structure of copper futures prices and Brexit," Resources Policy, Elsevier, vol. 71(C).
    5. Abakah, Emmanuel Joel Aikins & Caporale, Guglielmo Maria & Gil-Alana, Luis Alberiko, 2021. "Economic policy uncertainty: Persistence and cross-country linkages," Research in International Business and Finance, Elsevier, vol. 58(C).
    6. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
    7. Vadim Kufenko & Niels Geiger, 2016. "Business cycles in the economy and in economics: an econometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 43-69, April.
    8. Miguel Carvalho & Paulo Júlio, 2012. "Digging out the PPP hypothesis: an integrated empirical coverage," Empirical Economics, Springer, vol. 42(3), pages 713-744, June.
    9. Czudaj, Robert, 2011. "P-star in times of crisis - Forecasting inflation for the euro area," Economic Systems, Elsevier, vol. 35(3), pages 390-407, September.
    10. Lahura, Erick, 2017. "El efecto traspaso de la tasa de interés de política monetaria en Perú: evidencia reciente," Revista Estudios Económicos, Banco Central de Reserva del Perú, issue 33, pages 9-27.
    11. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Testing for co-integration in vector autoregressions with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 158(1), pages 7-24, September.
    12. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    13. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    14. Håvard Hungnes, 2016. "Fractionality and co-fractionality between Government Bond yields," Discussion Papers 838, Statistics Norway, Research Department.
    15. Philipp Adämmer & Martin T. Bohl, 2018. "Price discovery dynamics in European agricultural markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 549-562, May.
    16. Søren Johansen, 2010. "An Extension of Cointegration to Fractional Autoregressive Processes," Discussion Papers 10-28, University of Copenhagen. Department of Economics.
    17. Massimo Franchi & Paolo Paruolo, 2019. "A general inversion theorem for cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1176-1201, November.
    18. Gupta, Rakesh & Guidi, Francesco, 2012. "Cointegration relationship and time varying co-movements among Indian and Asian developed stock markets," International Review of Financial Analysis, Elsevier, vol. 21(C), pages 10-22.
    19. Nielsen, Morten Ørregaard, 2010. "Nonparametric cointegration analysis of fractional systems with unknown integration orders," Journal of Econometrics, Elsevier, vol. 155(2), pages 170-187, April.
    20. Senra Hodelin, Reynaldo, 2022. "Public banking and economic growth: The experiences of 10 countries since the 1950s until 2017," Economic Systems, Elsevier, vol. 46(1).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2010-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.