IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Numerical distribution functions of fractional unit root and cointegration tests

  • James G. MacKinnon

    ()

    (Queen's University)

  • Morten Ørregaard Nielsen

    ()

    (Queen's University and CREATES)

We calculate, by simulations, numerical asymptotic distribution functions of likelihood ratio tests for fractional unit roots and cointegration rank. Because these distributions depend on a real-valued parameter b which must be estimated, simple tabulation is not feasible. Partly due to the presence of this parameter, the choice of model specification for the response surface regressions used to obtain the numerical distribution functions is more involved than is usually the case. We deal with model uncertainty by model averaging rather than by model selection. We make available a computer program which, given the dimension of the problem, q, and a value of b, provides either a set of critical values or the asymptotic P value for any value of the likelihood ratio statistic.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://qed.econ.queensu.ca/working_papers/papers/qed_wp_1240.pdf
File Function: Third version 2012
Download Restriction: no

Paper provided by Queen's University, Department of Economics in its series Working Papers with number 1240.

as
in new window

Length: 12 pages
Date of creation: May 2012
Date of revision:
Handle: RePEc:qed:wpaper:1240
Contact details of provider: Postal: Kingston, Ontario, K7L 3N6
Phone: (613) 533-2250
Fax: (613) 533-6668
Web page: http://qed.econ.queensu.ca/
Email:


More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1240. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.