IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Nonparametric Cointegration Analysis of Fractional Systems With Unknown Integration Orders

  • Morten Ørregaard Nielsen


    (Queen's University and CREATES)

In this paper a nonparametric variance ratio testing approach is proposed for determining the cointegration rank in fractionally integrated systems. The test statistic is easily calculated without prior knowledge of the integration order of the data, the strength of the cointegrating relations, or the cointegration vector(s). The latter property makes it easier to implement than regression-based approaches, especially when examining relationships between several variables with possibly multiple cointegrating vectors. Since the test is nonparametric, it does not require the specification of a particular model and is invariant to short-run dynamics. Nor does it require the choice of any smoothing parameters that change the test statistic without being reflected in the asymptotic distribution. Furthermore, a consistent estimator of the cointegration space can be obtained from the procedure. The asymptotic distribution theory for the proposed test is non-standard but easily tabulated or simulated. Monte Carlo simulations demonstrate excellent finite sample properties, even rivaling those of well-specified parametric tests. The proposed methodology is applied to the term structure of interest rates, where, contrary to both fractional and integer-based parametric approaches, evidence in favor of the expectations hypothesis is found using the nonparametric approach.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: First version 2008
Download Restriction: no

Paper provided by Queen's University, Department of Economics in its series Working Papers with number 1174.

in new window

Length: 37 pages
Date of creation: Jul 2008
Date of revision:
Handle: RePEc:qed:wpaper:1174
Contact details of provider: Postal: Kingston, Ontario, K7L 3N6
Phone: (613) 533-2250
Fax: (613) 533-6668
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Søren Johansen & Morten Ørregaard Nielsen, 2007. "Likelihood inference for a nonstationary fractional autoregressive model," CREATES Research Papers 2007-33, School of Economics and Management, University of Aarhus.
  2. Vogelsang, Timothy J, 1998. "Testing for a Shift in Mean without Having to Estimate Serial-Correlation Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 73-80, January.
  3. Javier Hualde & A Robinson, 2006. "Root-N-Consistent Estimation Of Weakfractional Cointegration," STICERD - Econometrics Paper Series /06/499, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  4. Breitung, Jorg & Taylor, A. M. Robert, 2003. "Corrigendum to "Nonparametric tests for unit roots and cointegration" [J. Econom. 108 (2002) 343-363]," Journal of Econometrics, Elsevier, vol. 117(2), pages 401-404, December.
  5. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
  6. Pagan, A.R. & Hall, A.D. & Martin, V., 1995. "Modelling the Term Structure," Papers 284, Australian National University - Department of Economics.
  7. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
  8. John Y. Campbell & Robert J. Shiller, 1986. "Cointegration and Tests of Present Value Models," NBER Working Papers 1885, National Bureau of Economic Research, Inc.
  9. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
  10. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-80, November.
  11. Andy Snell, . "Testing For R Versus R-1 Cointegrating Vectors," Discussion Papers 1995-10, Edinburgh School of Economics, University of Edinburgh.
  12. Harris, David, 1997. "Principal Components Analysis of Cointegrated Time Series," Econometric Theory, Cambridge University Press, vol. 13(04), pages 529-557, August.
  13. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
  14. Breitung, Jörg & Hassler, Uwe, 2000. "Inference on the cointegration rank in fractionally integrated processes," SFB 373 Discussion Papers 2000,65, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  15. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
  16. Shintani, Mototsugu, 2001. "A simple cointegrating rank test without vector autoregression," Journal of Econometrics, Elsevier, vol. 105(2), pages 337-362, December.
  17. Nielsen, Morten Ørregaard, 2009. "A Powerful Test Of The Autoregressive Unit Root Hypothesis Based On A Tuning Parameter Free Statistic," Econometric Theory, Cambridge University Press, vol. 25(06), pages 1515-1544, December.
  18. Chen, Willa W. & Hurvich, Clifford M., 2003. "Semiparametric Estimation of Multivariate Fractional Cointegration," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 629-642, January.
  19. Breitung, Jorg, 2002. "Nonparametric tests for unit roots and cointegration," Journal of Econometrics, Elsevier, vol. 108(2), pages 343-363, June.
  20. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
  21. repec:cep:stiecm:/2003/449 is not listed on IDEAS
  22. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
  23. Bierens, H.J., 1995. "Nonparametric cointegration analysis," Discussion Paper 1995-123, Tilburg University, Center for Economic Research.
  24. Taylor, A. M. Robert, 2005. "Variance ratio tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 124(1), pages 33-54, January.
  25. Engsted, Tom & Tanggaard, Carsten, 1994. "Cointegration and the US term structure," Journal of Banking & Finance, Elsevier, vol. 18(1), pages 167-181, January.
  26. Phillips, P. C. B. & Ouliaris, S., 1988. "Testing for cointegration using principal components methods," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 205-230.
  27. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
  28. Willa Chen & Clifford Hurvich, 2004. "Semiparametric Estimation of Fractional Cointegrating Subspaces," Econometrics 0412007, EconWPA.
  29. Hall, Anthony D & Anderson, Heather M & Granger, Clive W J, 1992. "A Cointegration Analysis of Treasury Bill Yields," The Review of Economics and Statistics, MIT Press, vol. 74(1), pages 116-26, February.
  30. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(03), pages 651-676, June.
  31. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1174. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.