IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1185.html
   My bibliography  Save this paper

A Powerful Test of the Autoregressive Unit Root Hypothesis Based on a Tuning Parameter Free Statistic

Author

Listed:
  • Morten Ørregaard Nielsen

    () (Queen's University)

Abstract

This paper presents a family of simple nonparametric unit root tests indexed by one parameter, d, and containing Breitung's (2002) test as the special case d=1. It is shown that (i) each member of the family with d>0 is consistent, (ii) the asymptotic distribution depends on d, and thus reflects the parameter chosen to implement the test, and (iii) since the asymptotic distribution depends on d and the test remains consistent for all d>0, it is possible to analyze the power of the test for different values of d. The usual Phillips-Perron or Dickey-Fuller type tests are indexed by bandwidth, lag length, etc., but have none of these three properties. It is shown that members of the family with d

Suggested Citation

  • Morten Ørregaard Nielsen, 2008. "A Powerful Test of the Autoregressive Unit Root Hypothesis Based on a Tuning Parameter Free Statistic," Working Papers 1185, Queen's University, Department of Economics.
  • Handle: RePEc:qed:wpaper:1185
    as

    Download full text from publisher

    File URL: http://qed.econ.queensu.ca/working_papers/papers/qed_wp_1185.pdf
    File Function: First version 2008
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, July.
    2. Phillips, Peter C B & Xiao, Zhijie, 1998. " A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-469, December.
    3. Nielsen, Morten, 2008. "A Powerful Tuning Parameter Free Test of the Autoregressive Unit Root Hypothesis," Working Papers 08-05, Cornell University, Center for Analytic Economics.
    4. Breitung, Jorg & Taylor, A. M. Robert, 2003. "Corrigendum to "Nonparametric tests for unit roots and cointegration" [J. Econom. 108 (2002) 343-363]," Journal of Econometrics, Elsevier, vol. 117(2), pages 401-404, December.
    5. Taylor, A. M. Robert, 2005. "Variance ratio tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 124(1), pages 33-54, January.
    6. Agiakloglou, Christos & Newbold, Paul, 1996. "The balance between size and power in Dickey-Fuller tests with data-dependent rules for the choice of truncation lag," Economics Letters, Elsevier, vol. 52(3), pages 229-234, September.
    7. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    8. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    9. de Jong, Robert M. & Davidson, James, 2000. "The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals I," Econometric Theory, Cambridge University Press, vol. 16(05), pages 621-642, October.
    10. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    11. Shin, Yongcheol & Schmidt, Peter, 1992. "The KPSS stationarity test as a unit root test," Economics Letters, Elsevier, vol. 38(4), pages 387-392, April.
    12. Yoosoon Chang & Joon Y. Park, 2003. "A Sieve Bootstrap For The Test Of A Unit Root," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 379-400, July.
    13. Hualde, Javier, 2006. "Unbalanced Cointegration," Econometric Theory, Cambridge University Press, vol. 22(05), pages 765-814, October.
    14. Perron, Pierre & Qu, Zhongjun, 2007. "A simple modification to improve the finite sample properties of Ng and Perron's unit root tests," Economics Letters, Elsevier, vol. 94(1), pages 12-19, January.
    15. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    16. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    17. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
    18. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    19. Franses, Philip Hans & Haldrup, Niels, 1994. "The Effects of Additive Outliers on Tests for Unit Roots and Cointegration," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 471-478, October.
    20. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    21. Vogelsang, Timothy J, 1998. "Testing for a Shift in Mean without Having to Estimate Serial-Correlation Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 73-80, January.
    22. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
    23. Breitung, Jorg, 2002. "Nonparametric tests for unit roots and cointegration," Journal of Econometrics, Elsevier, vol. 108(2), pages 343-363, June.
    24. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
    25. Stephen J. Leybourne & Paul Newbold, 1999. "The behaviour of Dickey-Fuller and Phillips-Perron tests under the alternative hypothesis," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 92-106.
    26. Muller, Ulrich K., 2007. "A theory of robust long-run variance estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1331-1352, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nielsen, Morten Ørregaard, 2010. "Nonparametric cointegration analysis of fractional systems with unknown integration orders," Journal of Econometrics, Elsevier, vol. 155(2), pages 170-187, April.
    2. In Choi, 2014. "Unit root tests for dependent and heterogeneous micropanels," Working Papers 1404, Research Institute for Market Economy, Sogang University.
    3. Dechert, Andreas, 2014. "Fraktionale Kointegrationsbeziehungen zwischen Euribor-Zinssätzen," W.E.P. - Würzburg Economic Papers 93, University of Würzburg, Chair for Monetary Policy and International Economics.
    4. Burak Eroglu, 2017. "Wavelet Variance Ratio Test And Wavestrapping For The Determination Of The Cointegration Rank," Working Papers 1706, The Center for Financial Studies (CEFIS), Istanbul Bilgi University.
    5. Mehdi Hosseinkouchack & Uwe Hassler, 2016. "Powerful Unit Root Tests Free of Nuisance Parameters," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 533-554, July.
    6. Eroğlu, Burak Alparslan & Yiğit, Taner, 2016. "A nonparametric unit root test under nonstationary volatility," Economics Letters, Elsevier, vol. 140(C), pages 6-10.
    7. Burak Eroglu & Kemal Caglar Gogebakan & Mirza Trokic, 2017. "Fractional Seasonal Variance Ratio Unit Root Tests," Working Papers 1707, The Center for Financial Studies (CEFIS), Istanbul Bilgi University.
    8. Dechert, Andreas, 2012. "Variance Ratio Testing for Fractional Cointegration in Presence of Trends and Trend Breaks," MPRA Paper 41044, University Library of Munich, Germany.

    More about this item

    Keywords

    Augmented Dickey-Fuller test; fractional integration; GLS detrending; nonparametric; nuisance parameter; tuning parameter; power envelope; unit root test; variance ratio;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1185. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/qedquca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.