IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v76y2008i5p1103-1142.html
   My bibliography  Save this article

Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis

Author

Listed:
  • Michael Jansson

Abstract

This paper derives asymptotic power envelopes for tests of the unit root hypothesis in a zero-mean AR(1) model. The power envelopes are derived using the limits of experiments approach and are semiparametric in the sense that the underlying error distribution is treated as an unknown infinite-dimensional nuisance parameter. Adaptation is shown to be possible when the error distribution is known to be symmetric and to be impossible when the error distribution is unrestricted. In the latter case, two conceptually distinct approaches to nuisance parameter elimination are employed in the derivation of the semiparametric power bounds. One of these bounds, derived under an invariance restriction, is shown by example to be sharp, while the other, derived under a similarity restriction, is conjectured not to be globally attainable. Copyright 2008 The Econometric Society.

Suggested Citation

  • Michael Jansson, 2008. "Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 76(5), pages 1103-1142, September.
  • Handle: RePEc:ecm:emetrp:v:76:y:2008:i:5:p:1103-1142
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3982/ECTA6113
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drost, F.C. & Klaassen, C.A.J. & Werker, B.J.M., 1994. "Adaptive estimation in time-series models," Discussion Paper 1994-88, Tilburg University, Center for Economic Research.
    2. Phillips, Peter C B & Xiao, Zhijie, 1998. " A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-469, December.
    3. Pierre Perron & Serena Ng, 1996. "Useful Modifications to some Unit Root Tests with Dependent Errors and their Local Asymptotic Properties," Review of Economic Studies, Oxford University Press, vol. 63(3), pages 435-463.
    4. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    5. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    6. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    7. Joon Y. Park, 2003. "Bootstrap Unit Root Tests," Econometrica, Econometric Society, vol. 71(6), pages 1845-1895, November.
    8. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    9. Efstathios Paparoditis & Dimitris N. Politis, 2003. "Residual-Based Block Bootstrap for Unit Root Testing," Econometrica, Econometric Society, vol. 71(3), pages 813-855, May.
    10. Jeganathan, P., 1997. "On Asymptotic Inference in Linear Cointegrated Time Series Systems," Econometric Theory, Cambridge University Press, vol. 13(05), pages 692-745, October.
    11. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    12. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
    13. Herce, Miguel A., 1996. "Asymptotic Theory of LAD Estimation in a Unit Root Process with Finite Variance Errors," Econometric Theory, Cambridge University Press, vol. 12(01), pages 129-153, March.
    14. Rothenberg, Thomas J. & Stock, James H., 1997. "Inference in a nearly integrated autoregressive model with nonnormal innovations," Journal of Econometrics, Elsevier, vol. 80(2), pages 269-286, October.
    15. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    16. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    17. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, July.
    18. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    19. Donald W. K. Andrews, 1986. "Complete Consistency: A Testing Analogue of Estimator Consistency," Review of Economic Studies, Oxford University Press, vol. 53(2), pages 263-269.
    20. Thompson, Samuel B., 2004. "Robust Tests Of The Unit Root Hypothesis Should Not Be," Econometric Theory, Cambridge University Press, vol. 20(02), pages 360-381, April.
    21. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    22. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    23. Keisuke Hirano & Jack R. Porter, 2003. "Asymptotic Efficiency in Parametric Structural Models with Parameter-Dependent Support," Econometrica, Econometric Society, vol. 71(5), pages 1307-1338, September.
    24. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(05), pages 818-887, October.
    25. Roger Koenker & Zhijie Xiao, 2004. "Unit Root Quantile Autoregression Inference," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 775-787, January.
    26. M. N. Hasan & R. W. Koenker, 1997. "Robust Rank Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 65(1), pages 133-162, January.
    27. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    28. Victor Chernozhukov & Han Hong, 2004. "Likelihood Estimation and Inference in a Class of Nonregular Econometric Models," Econometrica, Econometric Society, vol. 72(5), pages 1445-1480, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jansson Michael & Nielsen Morten Ørregaard, 2011. "Nearly Efficient Likelihood Ratio Tests for Seasonal Unit Roots," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-21, February.
    2. repec:hal:journl:peer-00834424 is not listed on IDEAS
    3. Becheri, I.G. & Drost, F.C. & van den Akker, R., 2013. "Asymptotically UMP Panel Unit Root Tests," Discussion Paper 2013-017, Tilburg University, Center for Economic Research.
    4. Michael Jansson & Morten Ørregaard Nielsen, 2012. "Nearly Efficient Likelihood Ratio Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 80(5), pages 2321-2332, September.
    5. Hallin, M. & van den Akker, R. & Werker, B.J.M., 2012. "Rank-based Tests of the Cointegrating Rank in Semiparametric Error Correction Models," Discussion Paper 2012-089, Tilburg University, Center for Economic Research.
    6. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Unit Root Testing In Practice: Dealing With Uncertainty Over The Trend And Initial Condition," Econometric Theory, Cambridge University Press, vol. 25(03), pages 587-636, June.
    7. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.
    8. Hallin, Marc & van den Akker, Ramon & Werker, Bas J.M., 2011. "A class of simple distribution-free rank-based unit root tests," Journal of Econometrics, Elsevier, vol. 163(2), pages 200-214, August.
    9. Hallin, M. & Werker, B.J.M. & van den Akker, R., 2015. "Optimal Pseudo-Gaussian and Rank-based Tests of the Cointegration Rank in Semiparametric Error-correction Models," Discussion Paper 2015-001, Tilburg University, Center for Economic Research.
    10. Marc Hallin & Ramon van den Akker & Bas Werker, 2009. "A class of Simple Semiparametrically Efficient Rank-Based Unit Root Tests," Working Papers ECARES 2009_001, ULB -- Universite Libre de Bruxelles.
    11. Pierre Perron & Eduardo Zorita & Iliyan Georgiev & Paulo M. M. Rodrigues & A. M. Robert Taylor, 2017. "Unit Root Tests and Heavy-Tailed Innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 733-768, September.
    12. Hallin, M. & van den Akker, R. & Werker, B.J.M., 2011. "A Class of Simple Distribution-free Rank-based Unit Root Tests (Revision of DP 2010-72)," Discussion Paper 2011-002, Tilburg University, Center for Economic Research.
    13. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "Hypothesis Testing in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 75-104, September.
    14. David I. Harvey, & Stephen J. Leybourne, & A. M. Robert Taylor, 2007. "Testing for a unit root when uncertain about the trend [Revised to become 07/03 above]," Discussion Papers 06/03, University of Nottingham, Granger Centre for Time Series Econometrics.
    15. Dong Jin Lee, 2016. "Parametric and Semi-Parametric Efficient Tests for Parameter Instability," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 451-475, July.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:76:y:2008:i:5:p:1103-1142. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.