IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v100y2016icp4-16.html
   My bibliography  Save this article

Spectral approach to parameter-free unit root testing

Author

Listed:
  • Bailey, Natalia
  • Giraitis, Liudas

Abstract

A relatively simple frequency-type testing procedure for unit root potentially contaminated by an additive stationary noise is introduced, which encompasses general settings and allows for linear trends. The proposed test for unit root versus stationarity is based on a finite number of periodograms computed at low Fourier frequencies. It is not sensitive to the selection of tuning parameters defining the range of frequencies so long as they are in the vicinity of zero. The test does not require augmentation, has parameter-free non-standard asymptotic distribution and is correctly sized. The consistency rate under the alternative of stationarity reveals the relation between the power of the test and the long-run variance of the process. The finite sample performance of the test is explored in a Monte Carlo simulation study, and its empirical application suggests rejection of the unit root hypothesis for some of the Nelson–Plosser time series.

Suggested Citation

  • Bailey, Natalia & Giraitis, Liudas, 2016. "Spectral approach to parameter-free unit root testing," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 4-16.
  • Handle: RePEc:eee:csdana:v:100:y:2016:i:c:p:4-16
    DOI: 10.1016/j.csda.2015.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731500119X
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phillips, Peter C B & Xiao, Zhijie, 1998. " A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-469, December.
    2. Westerlund, Joakim, 2014. "On the choice of test for a unit root when the errors are conditionally heteroskedastic," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 40-53.
    3. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2011. "An I(d) model with trend and cycles," Journal of Econometrics, Elsevier, vol. 163(2), pages 186-199, August.
    4. Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of a Modified Dickey-Fuller Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 57(3), pages 411-419, August.
    5. Choi, In & Phillips, Peter C. B., 1993. "Testing for a unit root by frequency domain regression," Journal of Econometrics, Elsevier, vol. 59(3), pages 263-286, October.
    6. Peter C.B. Phillips, 1999. "Discrete Fourier Transforms of Fractional Processes," Cowles Foundation Discussion Papers 1243, Cowles Foundation for Research in Economics, Yale University.
    7. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    8. Perron, Pierre & Qu, Zhongjun, 2007. "A simple modification to improve the finite sample properties of Ng and Perron's unit root tests," Economics Letters, Elsevier, vol. 94(1), pages 12-19, January.
    9. Perron, Pierre, 1988. "Trends and random walks in macroeconomic time series : Further evidence from a new approach," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 297-332.
    10. Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of the Augmented Dickey-Fuller Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 277-280, July.
    11. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    12. Giraitis, Liudas & Leipus, Remigijus & Philippe, Anne, 2006. "A Test For Stationarity Versus Trends And Unit Roots For A Wide Class Of Dependent Errors," Econometric Theory, Cambridge University Press, vol. 22(06), pages 989-1029, December.
    13. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    14. Cochrane, John H., 1991. "A critique of the application of unit root tests," Journal of Economic Dynamics and Control, Elsevier, vol. 15(2), pages 275-284, April.
    15. Lucas, Andre, 1995. "An outlier robust unit root test with an application to the extended Nelson-Plosser data," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 153-173.
    16. Fan, Yanqin & Gençay, Ramazan, 2010. "Unit Root Tests With Wavelets," Econometric Theory, Cambridge University Press, vol. 26(05), pages 1305-1331, October.
    17. Phillips, Peter, 1999. "Discrete Fourier Transforms of Fractional Processes August," Working Papers 149, Department of Economics, The University of Auckland.
    18. Schotman, Peter C & van Dijk, Herman K, 1991. "On Bayesian Routes to Unit Roots," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 387-401, Oct.-Dec..
    19. Phillips, P C B, 1991. "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 333-364, Oct.-Dec..
    20. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    21. Lopez, J. Humberto, 1997. "The power of the ADF test," Economics Letters, Elsevier, vol. 57(1), pages 5-10, November.
    22. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    23. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Unit Root Testing In Practice: Dealing With Uncertainty Over The Trend And Initial Condition," Econometric Theory, Cambridge University Press, vol. 25(03), pages 587-636, June.
    24. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    25. Shelef, Amit, 2016. "A Gini-based unit root test," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 763-772.
    26. Breitung, Jorg, 2002. "Nonparametric tests for unit roots and cointegration," Journal of Econometrics, Elsevier, vol. 108(2), pages 343-363, June.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:100:y:2016:i:c:p:4-16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.