IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v163y2011i2p186-199.html
   My bibliography  Save this article

An I(d) model with trend and cycles

Author

Listed:
  • Abadir, Karim M.
  • Distaso, Walter
  • Giraitis, Liudas

Abstract

This paper deals with models allowing for trending processes and cyclical component with error processes that are possibly nonstationary, nonlinear, and non-Gaussian. Asymptotic confidence intervals for the trend, cyclical component, and memory parameters are obtained. The confidence intervals are applicable for a wide class of processes, exhibit good coverage accuracy, and are easy to implement.

Suggested Citation

  • Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2011. "An I(d) model with trend and cycles," Journal of Econometrics, Elsevier, vol. 163(2), pages 186-199, August.
  • Handle: RePEc:eee:econom:v:163:y:2011:i:2:p:186-199
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407611000686
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    2. Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameter for nonlinear time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 211-251, March.
    3. Donald W. K. Andrews & Yixiao Sun, 2004. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Econometrica, Econometric Society, vol. 72(2), pages 569-614, March.
    4. Dalla, Violetta & Giraitis, Liudas & Hidalgo, Javier, 2006. "Consistent estimation of the memory parameter for nonlinear time series," LSE Research Online Documents on Economics 6813, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
    2. Bailey, Natalia & Giraitis, Liudas, 2016. "Spectral approach to parameter-free unit root testing," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 4-16.
    3. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.
    4. Jiawen Xu & Pierre Perron, 2013. "Robust testing of time trend and mean with unknown integration order errors Frequency (and Other) Contaminations," Boston University - Department of Economics - Working Papers Series 2013-006, Boston University - Department of Economics.
    5. Natalia Bailey & Liudas Giraitis, 2015. "Spectral Approach to Parameter-Free Unit Root Testing," Working Papers 746, Queen Mary University of London, School of Economics and Finance.
    6. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Modified information criteria and selection of long memory time series models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 116-131.
    7. Iacone, Fabrizio & Leybourne, Stephen J. & Robert Taylor, A.M., 2013. "Testing for a break in trend when the order of integration is unknown," Journal of Econometrics, Elsevier, vol. 176(1), pages 30-45.

    More about this item

    Keywords

    Fractional integration Trend Cycle Nonlinear process Whittle objective function;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:163:y:2011:i:2:p:186-199. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.