IDEAS home Printed from
   My bibliography  Save this article

Goodness-of-fit tests for long memory moving average marginal density


  • Hira Koul


  • Nao Mimoto
  • Donatas Surgailis


This paper addresses the problem of fitting a known density to the marginal error density of a stationary long memory moving average process when its mean is known and unknown. In the case of unknown mean, when mean is estimated by the sample mean, the first order difference between the residual empirical and null distribution functions is known to be asymptotically degenerate at zero, and hence can not be used to fit a distribution up to an unknown mean. In this paper we show that by using a suitable class of estimators of the mean, this first order degeneracy does not occur. We also investigate the large sample behavior of tests based on an integrated square difference between kernel type error density estimators and the expected value of the error density estimator based on errors. The asymptotic null distributions of suitably standardized test statistics are shown to be chi-square with one degree of freedom in both cases of the known and unknown mean. In addition, we discuss the consistency and asymptotic power against local alternatives of the density estimator based test in the case of known mean. A finite sample simulation study of the test based on residual empirical process is also included. Copyright Springer-Verlag 2013

Suggested Citation

  • Hira Koul & Nao Mimoto & Donatas Surgailis, 2013. "Goodness-of-fit tests for long memory moving average marginal density," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 205-224, February.
  • Handle: RePEc:spr:metrik:v:76:y:2013:i:2:p:205-224 DOI: 10.1007/s00184-012-0383-y

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bachmann, Dirk & Dette, Holger, 2005. "A note on the Bickel-Rosenblatt test in autoregressive time series," Statistics & Probability Letters, Elsevier, pages 221-234.
    2. Giraitis, Liudas & Koul, Hira L. & Surgailis, Donatas, 1996. "Asymptotic normality of regression estimators with long memory errors," Statistics & Probability Letters, Elsevier, pages 317-335.
    3. Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameter for nonlinear time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 211-251, March.
    4. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hira L. Koul & Nao Mimoto & Donatas Surgailis, 2016. "A goodness-of-fit test for marginal distribution of linear random fields with long memory," Metrika: International Journal for Theoretical and Applied Statistics, Springer, pages 165-193.
    2. Taufer, Emanuele, 2015. "On the empirical process of strongly dependent stable random variables: asymptotic properties, simulation and applications," Statistics & Probability Letters, Elsevier, pages 262-271.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:76:y:2013:i:2:p:205-224. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.