IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Testing for unit roots in the presence of uncertainty over both the trend and initial condition

  • Harvey, David I.
  • Leybourne, Stephen J.
  • Taylor, A.M. Robert

In this paper we provide a joint treatment of two major problems that surround testing for a unit root in practice: uncertainty as to whether or not a linear deterministic trend is present in the data, and uncertainty as to whether the initial condition of the process is (asymptotically) negligible or not. We suggest decision rules based on the union of rejections of four standard unit root tests (OLS and quasi-differenced demeaned and detrended ADF unit root tests), along with information regarding the magnitude of the trend and initial condition, to allow simultaneously for both trend and initial condition uncertainty.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304407612000280
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 169 (2012)
Issue (Month): 2 ()
Pages: 188-195

as
in new window

Handle: RePEc:eee:econom:v:169:y:2012:i:2:p:188-195
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Graham Elliott & Thomas J. Rothenberg & James H. Stock, 1992. "Efficient Tests for an Autoregressive Unit Root," NBER Technical Working Papers 0130, National Bureau of Economic Research, Inc.
  2. Peter C.B. Phillips & Tassos Magdalinos, 2004. "Limit Theory for Moderate Deviations from a Unit Root," Cowles Foundation Discussion Papers 1471, Cowles Foundation for Research in Economics, Yale University.
  3. Peter C.B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Cowles Foundation Discussion Papers 1222, Cowles Foundation for Research in Economics, Yale University.
  4. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
  5. Choi, In & Phillips, Peter C. B., 1993. "Testing for a unit root by frequency domain regression," Journal of Econometrics, Elsevier, vol. 59(3), pages 263-286, October.
  6. Bunzel, Helle & Vogelsang, Timothy J., 2005. "Powerful Trend Function Tests That Are Robust to Strong Serial Correlation, With an Application to the Prebisch-Singer Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 381-394, October.
  7. Peter C.B. Phillips, 1991. "Bayesian Routes and Unit Roots: de rebus prioribus semper est disputandum," Cowles Foundation Discussion Papers 986, Cowles Foundation for Research in Economics, Yale University.
  8. Schmidt, Peter & Phillips, C B Peter, 1992. "LM Tests for a Unit Root in the Presence of Deterministic Trends," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 257-87, August.
  9. Kwiatkowski, D. & Phillips, P.C.B. & Schmidt, P., 1990. "Testing the Null Hypothesis of Stationarity Against the Alternative of Unit Root : How Sure are we that Economic Time Series have a Unit Root?," Papers 8905, Michigan State - Econometrics and Economic Theory.
  10. Phillips, P.C.B., 1990. "Time Series Regression With a Unit Root and Infinite-Variance Errors," Econometric Theory, Cambridge University Press, vol. 6(01), pages 44-62, March.
  11. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  12. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2007. "A simple, robust and powerful test of the trend hypothesis," Journal of Econometrics, Elsevier, vol. 141(2), pages 1302-1330, December.
  13. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2012. "Testing for unit roots in the presence of uncertainty over both the trend and initial condition," Journal of Econometrics, Elsevier, vol. 169(2), pages 188-195.
  14. Phillips, P C B, 1991. "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 333-64, Oct.-Dec..
  15. Peter C.B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Cowles Foundation Discussion Papers 1189, Cowles Foundation for Research in Economics, Yale University.
  16. Yoosoon Chang & Joon Park, 2002. "On The Asymptotics Of Adf Tests For Unit Roots," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 431-447.
  17. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, 07.
  18. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
  19. David I. Harvey & Stephen J. Leybourne & A. M. Robert Taylor, 2007. "Unit root testing in practice: dealing with uncertainty over the trend and initial condition," Discussion Papers 07/03, University of Nottingham, Granger Centre for Time Series Econometrics.
  20. Phillips, Peter C.B. & Ploberger, Werner, 1994. "Posterior Odds Testing for a Unit Root with Data-Based Model Selection," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 774-808, August.
  21. Elliott, Graham & Muller, Ulrich K., 2006. "Minimizing the impact of the initial condition on testing for unit roots," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 285-310.
  22. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:169:y:2012:i:2:p:188-195. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.