IDEAS home Printed from https://ideas.repec.org/p/not/notgts/06-01.html
   My bibliography  Save this paper

A simple, robust and powerful test of the trend hypothesis

Author

Listed:
  • David I. Harvey,
  • Stephen J. Leybourne,
  • A. M. Robert Taylor

Abstract

In this paper we develop a simple test procedure for a linear trend which does not require knowledge of the form of serial correlation in the data, is robust to strong serial correlation, and has a standard normal limiting null distribution under either I(0) or I(1) shocks. In contrast to other available robust linear trend tests, our proposed test achieves the Gaussian asymptotic local power envelope in both the I(0) and I(1) cases. For near- I(1) errors our proposed procedure is conservative and a modification for this situation is suggested. An estimator of the trend parameter, together with an associated confidence interval, which is asymptotically efficient, again regardless of whether the shocks are I(0) or I(1), is also provided.

Suggested Citation

  • David I. Harvey, & Stephen J. Leybourne, & A. M. Robert Taylor, 2006. "A simple, robust and powerful test of the trend hypothesis," Discussion Papers 06/01, University of Nottingham, Granger Centre for Time Series Econometrics.
  • Handle: RePEc:not:notgts:06/01
    as

    Download full text from publisher

    File URL: http://www.nottingham.ac.uk/research/groups/grangercentre/documents/06-01.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, Peter C B & Xiao, Zhijie, 1998. " A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-469, December.
    2. Faust, Jon, 1996. "Near Observational Equivalence and Theoretical size Problems with Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 12(04), pages 724-731, October.
    3. Bunzel, Helle & Vogelsang, Timothy J., 2005. "Powerful Trend Function Tests That Are Robust to Strong Serial Correlation, With an Application to the Prebisch-Singer Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 381-394, October.
    4. Grilli, Enzo R & Yang, Maw Cheng, 1988. "Primary Commodity Prices, Manufactured Goods Prices, and the Terms of Trade of Developing Countries: What the Long Run Shows," World Bank Economic Review, World Bank Group, vol. 2(1), pages 1-47, January.
    5. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    6. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    7. Eugene Canjels & Mark W. Watson, 1997. "Estimating Deterministic Trends In The Presence Of Serially Correlated Errors," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 184-200, May.
    8. Jansson, Michael, 2005. "Point optimal tests of the null hypothesis of cointegration," Journal of Econometrics, Elsevier, vol. 124(1), pages 187-201, January.
    9. Perron, Pierre, 1988. "Trends and random walks in macroeconomic time series : Further evidence from a new approach," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 297-332.
    10. Benedikt M. Poetscher, 2002. "Lower Risk Bounds and Properties of Confidence Sets for Ill-Posed Estimation Problems with Applications to Spectral Density and Persistence Estimation, Unit Roots, and Estimation of Long Memory Parame," Econometrica, Econometric Society, vol. 70(3), pages 1035-1065, May.
    11. Lutz, Matthias G, 1999. "A General Test of the Prebisch-Singer Hypothesis," Review of Development Economics, Wiley Blackwell, vol. 3(1), pages 44-57, February.
    12. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    13. Sun, Hongguang & Pantula, Sastry G., 1999. "Testing for trends in correlated data," Statistics & Probability Letters, Elsevier, vol. 41(1), pages 87-95, January.
    14. Jansson, Michael, 2004. "Stationarity Testing With Covariates," Econometric Theory, Cambridge University Press, vol. 20(01), pages 56-94, February.
    15. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    16. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    17. Mickael Salabasis & Sune Karlsson, 2004. "Seasonality, Cycles and Unit Roots," Econometric Society 2004 Australasian Meetings 268, Econometric Society.
    18. Durlauf, Steven N & Phillips, Peter C B, 1988. "Trends versus Random Walks in Time Series Analysis," Econometrica, Econometric Society, vol. 56(6), pages 1333-1354, November.
    19. Muller, Ulrich K., 2005. "Size and power of tests of stationarity in highly autocorrelated time series," Journal of Econometrics, Elsevier, vol. 128(2), pages 195-213, October.
    20. Jansson, Michael, 2002. "Consistent Covariance Matrix Estimation For Linear Processes," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1449-1459, December.
    21. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:not:notgts:06/01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/tsnotuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.