IDEAS home Printed from
   My bibliography  Save this paper

Seasonality, Cycles and Unit Roots


  • Mickael Salabasis
  • Sune Karlsson


Inference on ordinary unit roots, seasonal unit roots, seasonality and business cycles are fundamental issues in time series econometrics. This paper proposes a novel approach to inference on these features by focusing directly on the roots of the autoregressive polynomial rather than taking the standard route via the autoregressive coefficients. Allowing for unknown lag lengths and adopting a Bayesian approach we obtain posterior probabilities for the presence of these features in the data as well as the usual posteriors for the parameters of the model

Suggested Citation

  • Mickael Salabasis & Sune Karlsson, 2004. "Seasonality, Cycles and Unit Roots," Econometric Society 2004 Australasian Meetings 268, Econometric Society.
  • Handle: RePEc:ecm:ausm04:268

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. DeJong, David N. & Whiteman, Charles H., 1991. "Reconsidering 'trends and random walks in macroeconomic time series'," Journal of Monetary Economics, Elsevier, vol. 28(2), pages 221-254, October.
    2. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    3. Franses, Philip Hans & Hoek, Henk & Paap, Richard, 1997. "Bayesian analysis of seasonal unit roots and seasonal mean shifts," Journal of Econometrics, Elsevier, vol. 78(2), pages 359-380, June.
    4. Lubrano, Michel, 1995. "Testing for unit roots in a Bayesian framework," Journal of Econometrics, Elsevier, vol. 69(1), pages 81-109, September.
    5. DeJong, David N & Whiteman, Charles H, 1991. "The Temporal Stability of Dividends and Stock Prices: Evidence from the Likelihood Function," American Economic Review, American Economic Association, vol. 81(3), pages 600-617, June.
    6. G. Huerta & M. West, 1999. "Priors and component structures in autoregressive time series models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 881-899.
    7. Schotman, Peter C., 1994. "Priors For The Ar(1) Model: Parameterization Issues and Time Series Considerations," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 579-595, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2007. "A simple, robust and powerful test of the trend hypothesis," Journal of Econometrics, Elsevier, vol. 141(2), pages 1302-1330, December.

    More about this item


    Bayesian model averaging; autoregressive models;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:268. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.