IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v69y2001i5p1283-1314.html
   My bibliography  Save this article

Subsampling Intervals in Autoregressive Models with Linear Time Trend

Author

Listed:
  • Romano, Joseph P
  • Wolf, Michael

Abstract

A new method is proposed for constructing confidence intervals in autoregressive models with linear time trend. Interest focuses on the sum of the autoregressive coefficients because this parameter provides a useful scalar measure of the long-run persistence properties of an economic time series. Since the type of the limiting distribution of the corresponding OLS estimator, as well as the rate of its convergence, depend in a discontinuous fashion upon whether the true parameter is less than one or equal to one (that is, trend-stationary case or unit root case), the construction of confidence intervals is notoriously difficult. The crux of our method is to recompute the OLS estimator on smaller blocks of the observed data, according to the general subsampling idea of Politis and Romano (1994), although some extensions of the standard theory are needed. The method is more general than previous approaches in that it works for arbitrary parameter values, but also because it allows the innovations to be a martingale difference sequence rather than i.i.d. Some simulation studies examine the finite sample performance.

Suggested Citation

  • Romano, Joseph P & Wolf, Michael, 2001. "Subsampling Intervals in Autoregressive Models with Linear Time Trend," Econometrica, Econometric Society, vol. 69(5), pages 1283-1314, September.
  • Handle: RePEc:ecm:emetrp:v:69:y:2001:i:5:p:1283-1314
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Elliott, Graham & Stock, James H., 1994. "Inference in Time Series Regression When the Order of Integration of a Regressor is Unknown," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 672-700, August.
    2. Bruce E. Hansen, 1999. "The Grid Bootstrap And The Autoregressive Model," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 594-607, November.
    3. DeJong, David N. & Whiteman, Charles H., 1991. "Reconsidering 'trends and random walks in macroeconomic time series'," Journal of Monetary Economics, Elsevier, vol. 28(2), pages 221-254, October.
    4. Andrews, Donald W K & Chen, Hong-Yuan, 1994. "Approximately Median-Unbiased Estimation of Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 187-204, April.
    5. DeJong, David N & Whiteman, Charles H, 1991. "The Temporal Stability of Dividends and Stock Prices: Evidence from the Likelihood Function," American Economic Review, American Economic Association, vol. 81(3), pages 600-617, June.
    6. Politis, D. N. & Romano, Joseph P. & Wolf, Michael, 1997. "Subsampling for heteroskedastic time series," Journal of Econometrics, Elsevier, vol. 81(2), pages 281-317, December.
    7. Stock, James H., 1991. "Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series," Journal of Monetary Economics, Elsevier, vol. 28(3), pages 435-459, December.
    8. Andrews, Donald W K, 1993. "Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models," Econometrica, Econometric Society, vol. 61(1), pages 139-165, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:69:y:2001:i:5:p:1283-1314. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.