IDEAS home Printed from
   My bibliography  Save this paper

A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter




This paper introduces a new confidence interval (CI) for the autoregressive parameter (AR) in an AR(1) model that allows for conditional heteroskedasticity of general form and AR parameters that are less than or equal to unity. The CI is a modification of Mikusheva's (2007a) modification of Stock's (1991) CI that employs the least squares estimator and a heteroskedasticity-robust variance estimator. The CI is shown to have correct asymptotic size and to be asymptotically similar (in a uniform sense). It does not require any tuning parameters. No existing procedures have these properties. Monte Carlo simulations show that the CI performs well in finite samples in terms of coverage probability and average length, for innovations with and without conditional heteroskedasticity.

Suggested Citation

  • Donald W.K. Andrews & Patrik Guggenberger, 2011. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," Cowles Foundation Discussion Papers 1812, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1812

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Romano, Joseph P & Wolf, Michael, 2001. "Subsampling Intervals in Autoregressive Models with Linear Time Trend," Econometrica, Econometric Society, vol. 69(5), pages 1283-1314, September.
    2. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Autoregressive Processes with Possible Unit Roots," Econometrica, Econometric Society, vol. 70(1), pages 377-391, January.
    3. Cribari-Neto, Francisco, 2004. "Asymptotic inference under heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 215-233, March.
    4. Kim, Kiwhan & Schmidt, Peter, 1993. "Unit root tests with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 59(3), pages 287-300, October.
    5. Andrews, Donald W K & Chen, Hong-Yuan, 1994. "Approximately Median-Unbiased Estimation of Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 187-204, April.
    6. Bruce E. Hansen, 1999. "The Grid Bootstrap And The Autoregressive Model," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 594-607, November.
    7. Ma Jun & Nelson Charles R & Startz Richard, 2007. "Spurious Inference in the GARCH (1,1) Model When It Is Weakly Identified," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(1), pages 1-27, March.
    8. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    9. Liudas Giraitis & Peter C. B. Phillips, 2006. "Uniform Limit Theory for Stationary Autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 51-60, January.
    10. Elliott, Graham & Stock, James H., 2001. "Confidence intervals for autoregressive coefficients near one," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 155-181, July.
    11. Kuersteiner, Guido M., 2001. "Optimal instrumental variables estimation for ARMA models," Journal of Econometrics, Elsevier, vol. 104(2), pages 359-405, September.
    12. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
    13. Donald W.K. Andrews & Xu Cheng & Patrik Guggenberger, 2011. "Generic Results for Establishing the Asymptotic Size of Confidence Sets and Tests," Cowles Foundation Discussion Papers 1813, Cowles Foundation for Research in Economics, Yale University.
    14. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
    15. Kristensen, Dennis & Linton, Oliver, 2006. "A Closed-Form Estimator For The Garch(1,1) Model," Econometric Theory, Cambridge University Press, vol. 22(02), pages 323-337, April.
    16. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    17. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, July.
    18. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    19. Seo, Byeongseon, 1999. "Distribution theory for unit root tests with conditional heteroskedasticity1," Journal of Econometrics, Elsevier, vol. 91(1), pages 113-144, July.
    20. Donald W.K. Andrews & Patrik Guggenberger, 2007. "Hybrid and Size-Corrected Subsample Methods," Cowles Foundation Discussion Papers 1606, Cowles Foundation for Research in Economics, Yale University.
    21. Andrews, Donald W K, 1993. "Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models," Econometrica, Econometric Society, vol. 61(1), pages 139-165, January.
    22. Donald W. K. Andrews & Patrik Guggenberger, 2009. "Hybrid and Size-Corrected Subsampling Methods," Econometrica, Econometric Society, vol. 77(3), pages 721-762, May.
    23. Anna Mikusheva, 2007. "Uniform Inference in Autoregressive Models," Econometrica, Econometric Society, vol. 75(5), pages 1411-1452, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. David M. Kaplan & Matt Goldman, 2011. "Nonparametric inference on conditional quantile differences and linear combinations, using L-statistics," Working Papers 1620, Department of Economics, University of Missouri, revised 21 Nov 2016.
    2. repec:gam:jecnmx:v:5:y:2017:i:3:p:41-:d:111322 is not listed on IDEAS
    3. Phillips, Peter C.B. & Lee, Ji Hyung, 2016. "Robust econometric inference with mixed integrated and mildly explosive regressors," Journal of Econometrics, Elsevier, vol. 192(2), pages 433-450.
    4. repec:gam:jecnmx:v:5:y:2017:i:3:p:43-:d:112377 is not listed on IDEAS
    5. Goldman, Matt & Kaplan, David M., 2017. "Fractional order statistic approximation for nonparametric conditional quantile inference," Journal of Econometrics, Elsevier, vol. 196(2), pages 331-346.

    More about this item


    Asymptotically similar; Asymptotic size; Autoregressive model; Conditional heteroskedasticity; Confidence interval; Hybrid test; Subsampling test; Unit root;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1812. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.